International Journal of MATERIALS RESEARCH

Zeitschrift für METALLKUNDE

C. Hu et al.: In-situ reaction synthesis and decomposition of Ta₂AlC

Chunfeng Hu^{a,b}, Jie Zhang^{a,b}, Yiwang Bao^a, Jingyang Wang^a, Meishuan Li^a, Yanchun Zhou^a ^aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

^bGraduate School of Chinese Academy of Sciences, Beijing, China

In-situ reaction synthesis and decomposition of Ta₂AlC

Dense bulk Ta₂AlC ceramic was fabricated by in-situ reaction/hot pressing of Ta, Al and C powders. The reaction path and effects of initial composition on the purity were investigated. It was found that Ta₂AlC formed through the reactions between AlTa₂ and graphite, or between Ta₅Al₃C, TaC and graphite at 1500–1550 °C. By modifying the molar ratio of the initial Ta, Al, and C powders, single-phase Ta₂AlC was prepared at 1550 °C under an Ar atmosphere with an optimized composition of Ta: Al: C = 2:1.2:0.9. The lattice parameter and a new set of X-ray diffraction data of Ta₂AlC were obtained. In addition, Ta₂AlC was reported unstable above 1600 °C and decomposed to Ta₄AlC₃, and then to TaC_x.

Keywords: Ta₂AlC; Synthesis; Decomposition

1. Introduction

Due to the unique combination of properties, such as easy machinability [1-3], high elastic stiffness [4, 5], good electrical and thermal conductivity [2, 6], excellent thermal shock resistance and damage tolerance [2, 7, 8], $M_{n+1}AX_n$ (M, early transition metal; A, A group element; X, C or N; n = 1-3), also called MAX phases, have attracted attention for many years. Since Barsoum and his co-workers first fabricated bulk Ti₃SiC₂ [2], a number of layered MAX ceramics including Ti₃AlC₂ [9], Ti₂AlC [10–13], Nb₂AlC [14, 15], V₂AlC [16], Cr₂AlC [17], have been synthesized and their physical and mechanical properties reported. In

the MAX family, Ta₂AlC has been determined to crystallize with P6₃/mmc symmetry using X-ray diffraction (XRD) analysis in 1960s [18]. Recently, Sun et al. [19] calculated the elastic properties of Ta₂AlC by means of ab initio total energy calculations using the projector augmented-wave method. Manoun et al. [20] determined that the compressibilities of Ta₂AlC in *a* and *c* directions were almost identical. Lin et al. [21] confirmed the crystal structure of Ta₂AlC through high resolution transmission electron microscope (HRTEM) and Z-contrast imaging. Gupta et al. [22] reported that Ta₂AlC was not resistant to oxidation.

For understanding the intrinsic physical and mechanical properties of Ta₂AlC, single-phase Ta₂AlC needs to be prepared. However, in previous reports, Ta₄AlC₃ was always a coexisting phase [21, 22]. Seldom have works focused on synthesizing single-phase Ta₂AlC through investigating the reaction process. In the present work, the reaction path and the effects of initial element percent on the purity of Ta₂AlC were investigated using Ta, Al and C powders as initial materials by an in-situ reaction/hot pressing method [23]. Single-phase Ta₂AlC could be obtained at 1550°C with an optimized molar composition of Ta:Al:C =2:1.2:0.9. In addition, it is known that MAX phases are unstable and may decompose at high temperatures [24, 25]. Racault et al. [25] reported that Ti₃SiC₂ was unstable above 1300 $^{\circ}\text{C}$ (above its synthesis temperature of 1100 $^{\circ}\text{C}$), and decomposed with the formation of nonstoichiometric titanium carbide and gaseous silicon. In our work, we found Ta₂AlC was unstable above 1600 °C and transformed into Ta_4AlC_3 , and then to TaC_x with out-diffusing of Al. The decomposition mechanism of Ta₂AlC was investigated.

2. Experimental procedure

Commercially available powders of Ta (99.9%, -200 mesh), Al (99%, -300 mesh) and graphite (99%, -200 mesh) were used as starting powders for fabricating Ta₂AlC. The Ta, Al and C powders with molar ratio of 2:1:1 were weighed initially in order to investigate the synthesis path. The powders were dry mixed in a resin jar, ball milled for 12 h, and then sieved. For the preparation of Ta₂AlC, the mixed powders were uniaxially pressed at 5 MPa to the green compacts in a BN-coated graphite die, and then heated in a graphite furnace at different temperatures under an Ar atmosphere. The heating rate was 15 K \cdot min⁻¹ and the holding duration was 20 min. Finally, the samples were cooled down to room temperature. A column of 25 mm in diameter and 3 mm in height was obtained after removing the surface contamination. The synthesized samples were examined by XRD (Rigaku D/max-2400, Tokyo, Japan) with Cu-K_{α} radiation (λ = 1.54178 Å) at a scanning speed of $0.04^{\circ} \cdot \text{step}^{-1}$. The ground surfaces of samples were analyzed by a scanning electron microscope (SEM) (LEO Supra35, Ammerbuch, Germany) equipped with an energy dispersive spectroscopic (EDS) system.

In order to investigate effects of the initial compositions on purity of Ta₂AlC, the starting powders with modified molar ratios of Ta:Al:C were subjected to hot pressing runs at 1550 °C under 25 MPa in an Ar atmosphere. XRD results showed that single-phase polycrystalline Ta₂AlC could be obtained using the initial powders with molar ratio of 2:1.2:0.9. For quantitative XRD analysis, powders drilled from bulk specimen were examined with a step size of 0.02° and a count time of $2 \text{ s} \cdot \text{step}^{-1}$ between 5° and 75° . Lattice parameters, *hkl*, $2\theta'$ and intensities were calculated by the Rietveld refinement method using a DBWS code in Cerius² computational program for material research (Molecular Simulation Inc., San Diego, USA).

The decomposition mechanism of Ta₂AlC was investigated by treating Ta₂AlC samples with a dimension of $10 \times 10 \times 1$ mm³ at 1600-1700 °C in a graphite crucible for 120 min under an Ar atmosphere (static pressure of 100 kPa). A yellow layer was observed forming on the surface of heated samples. Thereafter, XRD analysis was conducted on the surface layer and the sublayer after removing the as-formed surface layer. The surface scale and cross-section of treated samples were investigated by SEM and EDS.

3. Results and discussion

3.1. Effect of temperature on the synthesis of Ta₂AlC

Figure 1 shows X-ray diffraction patterns of samples synthesized at different temperatures. The detected phases are listed in Table 1 in sequence of temperature. No reaction occurred below 700 °C. When the temperature increased to 900 °C, Al₃Ta and TaC appeared, as described by reaction Eqs. (1) and (2):

$$Ta + 3AI \rightarrow Al_3Ta \tag{1}$$

$$\Gamma a + C \to TaC \tag{2}$$

SEM analysis revealed that the phases showed different morphologies. EDS analysis indicates the equiaxial parti-

cles are Al₃Ta and the irregular particles are unreacted Ta, as shown in Fig. 2a. At 1100 °C, AlTa₂ appeared with the consumption of Al₃Ta and Ta. The reaction equation is:

$$5 \text{Ta} + \text{Al}_3 \text{Ta} \rightarrow 3 \text{AlTa}_2$$
 (3)

As temperature increased to 1300-1400 °C, the diffraction peaks showed new phases of Ta₅Al₃C, Ta₂AlC, Ta₄AlC₃ [26–28] and Ta₂C. The amounts of AlTa₂, TaC, Ta₂C and Ta₅Al₃C increase with the consumption of Ta, C and Al₃Ta (Fig. 1d and e). As can be seen in Fig. 2b and c, most of the gray particles are AlTa₂ at 1300 °C, and thereafter agglomeration and growth of AlTa₂ particles are observed at 1400 °C. The possible reactions for forming Ta₂C and

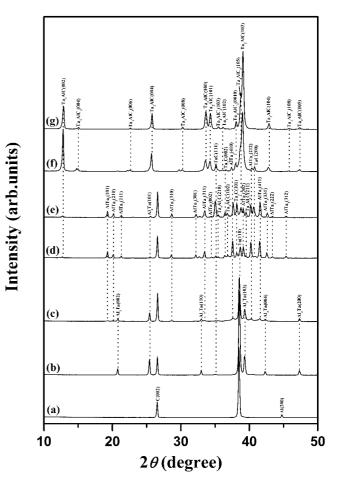


Fig. 1. X-ray diffraction patterns of 2Ta/Al/C mixed powders hotpressed at (a) 700 °C, (b) 900 °C, (c) 1100 °C, (d) 1300 °C, (e) 1400 °C, (f) 1500 °C, and (g) 1550 °C.

Table 1. Phase compositions of the samples sintered in the temperature range from 700 to 1550 °C.

Temperature	Phase compositions in the samples
700 °C	Ta, Al, C
900 °C	Al ₃ Ta, TaC, Ta, C
1100 °C	AlTa ₂ , Al ₃ Ta, TaC, Ta, C
1300°C	Ta ₂ AlC, Ta ₅ Al ₃ C, AlTa ₂ , Al ₃ Ta, Ta ₂ C, TaC, Ta, C
1400°C	Ta ₂ AlC, Ta ₄ AlC ₃ , Ta ₅ Al ₃ C, AlTa ₂ , Al ₃ Ta, Ta ₂ C,
	TaC, C
1500°C	Ta ₂ AlC, Ta ₄ AlC ₃ , AlTa ₂ , Ta ₂ C, TaC, C
1550°C	Ta_2AIC , Ta_4AIC_3



Fig. 2. Secondary electron microscopy (SEM) and back scattered electron (BSE) images of 2Ta/Al/C mixed powders hot-pressed at (a) 900 $^{\circ}$ C (SEM), (b) 1300 $^{\circ}$ C (BSE), (c) 1400 $^{\circ}$ C (BSE), and (d) 1550 $^{\circ}$ C (BSE).

Ta₅Al₃C are:

 $Ta + TaC \to Ta_2C \tag{4}$

$$3 \operatorname{AlTa}_2 + 2 \operatorname{C} \to \operatorname{Ta}_5 \operatorname{Al}_3 \operatorname{C} + \operatorname{Ta} \operatorname{C}$$
 (5)

Schuster et al. [29] reported that the new-formed phases at a lower temperature of 700 and 1000 °C were AlTa₂ and Ta₂C. The difference may be due to the kinetics of phase formation. When the temperature increased up to 1500 °C, the main crystalline phase was Ta₂AlC, together with small quantities of Ta₄AlC₃, TaC, Ta₂C, AlTa₂ and C. Lin et al. [30] confirmed that the Ti–Al twin boundaries provided the rapid diffusion paths for C, and contributed to the formation of Ti₂AlC. Similarly, the production of Ta₂AlC could be associated with the consuming AlTa₂ and graphite:

$$AITa_2 + C \to Ta_2AIC \tag{6}$$

El-Raghy et al. [31] proposed that Ti_5Si_3C and TiC were the intermediate phases intimately involved in the formation of Ti_3SiC_2 . Probably, Ta_2AlC could also be produced from Ta_5Al_3C , TaC and graphite following the reaction:

$$Ta_{5}Al_{3}C + TaC + C \rightarrow 3Ta_{2}AlC$$
⁽⁷⁾

When the temperature was raised to $1550 \,^{\circ}$ C, only Ta₂AlC and Ta₄AlC₃ were detected. AlTa₂, TaC, Ta₂C and C were possibly consumed to produce Ta₄AlC₃ as follows:

$$AITa_2 + 2TaC + C \rightarrow Ta_4AlC_3 \tag{8}$$

and

$$AITa_2 + Ta_2C + 2C \rightarrow Ta_4AIC_3 \tag{9}$$

The polished surface of the sample sintered at $1550 \,^{\circ}\text{C}$ revealed that both Ta₂AlC and Ta₄AlC₃ grains were gray and were hard to distinguish (Fig. 2d). Some white contrasting particles were identified as nonstoichiometric Ta-Al phase by EDS, distributing in the intergranular positions.

3.2. Effect of molar ratio of initial elemental powders on the purity of Ta_2AIC

It is obvious that pure Ta₂AlC cannot be synthesized using Ta, Al and C powders with a molar ratio of 2:1:1, as discussed in the above section. Ta₄AlC₃ always coexists with Ta₂AlC in the sample prepared above 1500 °C. The attempts to fabricate single-phase Ta₂AlC are focused on modifying the initial composition. At first, we compared the atomic percent of Al and C in Ta₂AlC and Ta₄AlC₃. The atomic percent of Al in Ta₂AlC is higher than that in Ta_4AlC_3 , while the atomic percent of C is lower in Ta_2AlC . Therefore, in order to eliminate Ta_4AlC_3 , this highlights a way to increase the content of Al and to decrease C in the starting mixed powders. The starting powders with molar ratios of Ta: Al: C = 2:1.1:1, 2:1.2:1, and 2:1.2:0.9 were selected and sintered at 1550 °C for 20 min. The diffraction patterns of samples prepared with different compositions are plotted in Fig. 3. It is seen from Fig. 3a and b that those samples synthesized with the molar ratios of Ta:AI:C =2:1.1:1 and 2:1.2:1 still contain small quantities of Ta₄AlC₃. When the Ta:Al:C molar ratio changed to 2:1.2:0.9, single-phase Ta₂AlC is obtained, as shown in Fig. 3c. A similar strategy was successfully used to prepare

Int. J. Mat. Res. (formerly Z. Metallkd.) 99 (2008) 1

single-phase Ti_3AlC_2 with the molar ratio of Ti:Al:C = 3:1.1:1.8 [32].

The density of single-phase polycrystalline Ta₂AlC was measured by the Archimedes method, and yields $11.46 \text{ g} \cdot \text{cm}^{-3}$, which is close to the theoretical value of $11.52 \text{ g} \cdot \text{cm}^{-3}$. The Rietveld refinement of the XRD pattern for drilled Ta₂AlC powders is conducted and plotted in Fig. 4. A comparison between the experimental powder diffraction data and the calculated pattern of Ta₂AlC is also shown in the figure. The separated short dashed lines represent the positions of diffraction peaks. The line plot denotes experimental diffraction spectra, and the cross is the simulated pattern. Deviation between them is plotted as the lowest curve. The reliability factors are R-P = 8.48% and R-WP = 11.23%, respectively. The refined lattice parameters are a = 3.081 Å and c = 13.89 Å, agreeing well with previous results reported by Manoun et al. (a = 3.086 Å, c = 13.85 Å) [20], Lin et al. (a = 3.079 Å, c = 13.86 Å) [21], and ICDD card No. 29-0092 (a = 3.075 Å, c =13.83 Å).

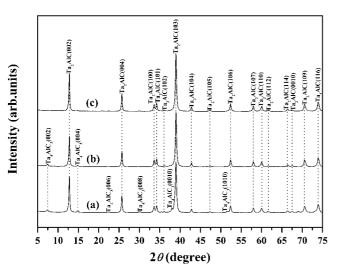


Fig. 3. X-ray diffraction patterns of Ta₂AlC samples prepared using the starting powders with molar ratios of Ta:Al:C = (a) 2:1.1:1, (b) 2:1.2:1, and (c) 2:1.2:0.9, showing the effect of initial element composition on purity.

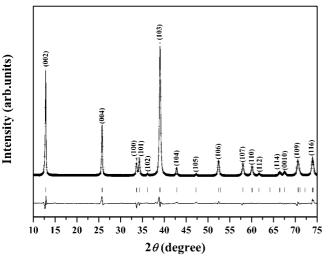


Fig. 4. Comparison of experimental powder diffraction data with the calculated pattern of Ta_2AIC .

Int. J. Mat. Res. (formerly Z. Metallkd.) 99 (2008) 1

Table 2. Calculated, experimental and ICDD card No. 29	9-0092						
data of reflections, $2\theta'$ and intensities for Ta ₂ AlC.							

			-			
Reflection (hkl)	$2 heta_{ ext{Cal.}} (^{\circ})$	$2 heta_{ ext{Obs.}} \ (^\circ)$	$2 heta_{ ext{ICDD.}}$ (°)	1/I _{0Cal.} (%)	1/I _{0Obs.} (%)	I/I _{0ICDD.} (%)
002	12.773	12.780	12.791	80.12	78.71	70
004	25.709	25.701	25.749	39.82	41.94	12
100	33.618	33.664	33.626	17.65	15.36	20
101	34.253	34.300	34.263	18.10	17.67	22
102	36.099	36.149	36.115	1.79	1.97	4
006	38.988	38.948		58.14	58.20	
103	39.007	39.062	39.028	100.00	100.00	100
104	42.797	42.859	42.823	9.57	10.78	5
105	47.306	47.376	47.347	2.21	2.93	5
106	52.409	52.488	52.460	21.61	22.82	10
008	52.840	52.924		0.02	0.02	
107	58.022	58.112	58.085	20.09	19.04	5
110	60.116	60.204	60.132	15.81	15.77	12
112	61.738	61.829	61.761	3.33	3.46	3
108	64.101	64.203		0.17	0.18	
114	66.468	66.569	66.498	6.99	7.04	3
0010	67.585	67.509		7.36	6.72	
109	70.633	70.750	70.722	13.66	12.86	10
200	70.670	70.778		1.03	0.97	
201	71.046	71.154	71.065	2.72	2.51	6
202	72.166	72.278		0.34	0.33	
116	74.007	74.125		19.05	21.66	
203	74.019	74.135	74.056	12.75	14.50	16

Table 2 lists the calculated reflections and intensities of Ta_2AIC , together with those of experimental and in ICDD card No. 29-0092. All reflections are in good agreement with the data from different sources. The present study also presents some new reflections, which were not reported before. Therefore, we complement the XRD data of Ta₂AIC in the present work.

3.3. Decomposition mechanism of Ta₂AlC

In the present processing conditions, Ta₂AlC is typically observed to coexist with Ta₄AlC₃. Possibly, a transformation exists between Ta₂AlC and Ta₄AlC₃ at 1550 °C or higher temperatures. Zhou et al. [33] reported that Ti₂AlC lost half of its aluminum layers and then transformed to Ti₃AlC₂ when synthesizing Ti₃AlC₂ by hot pressing using starting materials of Ti, Al₄C₃ and activated carbon. In order to prove this supposition in the Ta-Al-C system, single-phase Ta₂AlC samples are heated at temperatures of 1600, 1650 and 1700 °C under an Ar atmosphere to determine possible transformation. A yellow-colored layer is formed on the surface of treated samples. The top scale is determined to be cubic TaC by XRD, as shown in Fig. 5. The separation of diffraction peaks above 57° is attributed to Cu-K_{α} and Cu-K_{β}. Generally, tantalum carbide TaC is nonstoichiometric and presented by TaC_x. From the 111, 200, 220, 311 and 222 peaks in the profile, the lattice parameter a_0 is determined as 0.444592, 0.444405 and 0.444505 nm. According to the Bowman's equation: x = $63.98a_0 - 27.516$ [34], the x values are calculated as 0.929, 0.917 and 0.923, respectively. Figure 6 shows a cross-section of a Ta₂AlC sample after treating at 1700 °C for 120 min. The outer layer is a compact TaC_x layer. The inset is an enlargement of the rectangular region. EDS analysis reveals that the equaxial particles are TaC_x and the lamellar

Basic

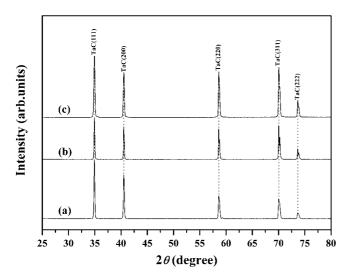


Fig. 5. X-ray diffraction patterns of Ta_2AlC samples treated at (a) 1600 °C, (b) 1650 °C, and (c) 1700 °C.

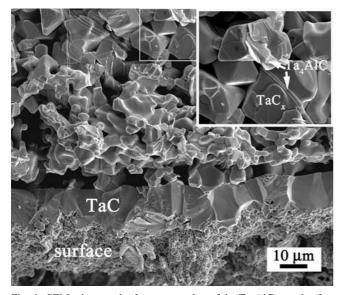


Fig. 6. SEM micrograph of a cross-section of the Ta_2AIC sample after treating at 1700 °C for 120 min. The inset is a high magnification view of the rectangular region.

grains are Ta₄AlC₃. It is difficult to accurately determine the x value because of the light C element [35]. We further studied the X-ray diffraction patterns of treated Ta₂AlC samples after removing the surface layer, as shown in Fig. 7. Obviously, the Ta_4AlC_3 phase appears in the sample treated at 1600 °C for 120 min (Fig. 7a). When the temperature is raised to 1650 °C, Ta₄AlC₃ is detected as the predominant phase (Fig. 7b). At 1700° C, both Ta₄AlC₃ and TaC_x are detected (Fig. 7c). From 1600 to 1700 °C, it is seen that the diffraction peaks of Ta₄AlC₃ shift to higher angles, indicating the decrease in lattice parameters of Ta₄AlC₃ with Al out-diffusion [24, 33]. The lattice parameter c values of Ta_4AlC_3 are established as 2.383, 2.359 and 2.290 nm, respectively. The diffraction profile of TaC_{x} is similar to that of rhombohedral $TaC_{0.59}N_{0.15}$ (structure R3m) which was formed by substituting carbon atoms for about 20 at.% nitrogen atoms in Ta_4C_3 [36]. Based on the XRD profile (Fig. 7c), the lattice parameters of TaC_x are calculated as a = 0.3118 nm and c = 2.986 nm, which is close to those of

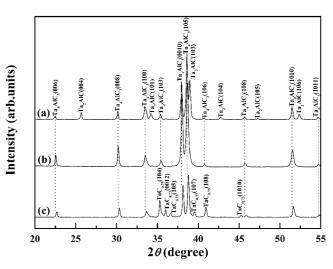


Fig. 7. X-ray diffraction patterns of Ta₂AlC samples after treating at (a) 1600 $^{\circ}$ C, (b) 1650 $^{\circ}$ C, and (c) 1700 $^{\circ}$ C and then removing the surface layer.

 $TaC_{0.59}N_{0.15}$ (a = 0.3107 nm and c = 3.009 nm) and Ta_4C_3 (a = 0.3120 nm and c = 3.005 nm) [36]. So, TaC_x may have the same rhombohedral structure as $TaC_{0.59}N_{0.15}$ and Ta₄C₃. Additionally, Emmerlich et al. [24] reported the rapid decomposition of Ti₃SiC₂ by Si out-diffusion along the basal planes to form Ti₃C₂ slabs above 1100 °C, and then the Ti_3C_2 slabs detwinning into (111)-oriented $TiC_{0.67}$ layers. Therefore, the x value may be 0.75. The results suggest that Ta₂AlC is unstable above 1600 °C and decomposes into Ta_4AlC_3 or $TaC_{0.75}$ by Al out-diffusion. The decomposition sequence may be that Ta₂AlC firstly decomposes to Ta_4AlC_3 , and then to rhombohedral $TaC_{0.75}$. In addition, Zhang et al. [37] reported that Ti₃AlC₂ preferred to form $h-TiC_x$ and then C vacancies redistributed more uniformly to form $c-TiC_x$ when studying the structure stability of Ti₃AlC₂ in Cu above 850 °C. Possibly, the transformation of rhombohedral $TaC_{0.75}$ into cubic $TaC_{0.75}$ happened during the heat treatment. The higher C content of cubic TaC_x in the surface scale is probably attributed to the C-supply from the graphite crucible [35]. Also, Al_4C_3 was found on the wall of graphite crucible. It may be formed according to reactions (10) and (11):

 $Ta_4AlC_3(s) \rightarrow 4TaC_{0.75}(s) + Al(g)$ (10)

$$4\operatorname{Al}(g) + 3C \to \operatorname{Al}_4C_3(s) \tag{11}$$

4. Conclusions

Ta₂AlC ceramic was fabricated by an in-situ reaction/hot pressing method using Ta, Al and C powders as initial materials. Investigation of the reaction path showed that Ta₂AlC was produced by reaction between AlTa₂ and graphite, or between Ta₅Al₃C, TaC and graphite at 1500–1550 °C. Ta₄AlC₃ was the impurity phase in Ta₂AlC and was difficult to eliminate. Through modifying the element composition, single-phase Ta₂AlC could be obtained using an optimized composition with the molar ratio of Ta:Al:C = 2:1.2:0.9 and hot pressing at 1550 °C. Above 1600 °C, Ta₄AlC was unstable and decomposed into Ta₄AlC₃, and then to TaC_x.

Int. J. Mat. Res. (formerly Z. Metallkd.) 99 (2008) 1

This work was supported by the National Outstanding Young Scientist Foundation (No. 59925208 for Y. C. Zhou and No. 50125204 for Y. W. Bao), Nature Science Foundation of China under Grant No. 50232040, No. 50302011, No. 90403027, Chinese Academy of Sciences, and French Atomic Energy Commission.

References

- [1] M.W. Barsoum: Prog. Solid State Chem. 28 (2000) 201.
- [2] M.W. Barsoum, T. El-Raghy: J. Am. Ceram. Soc. 79 (1996) 1953. [3] M.W. Barsoum, D. Brodkin, T. El-Raghy: Scripta Mater. 36 (1997) 535.
- [4] M.W. Barsoum, T. El-Raghy: Metall. Mater. Trans. A 30 (1999) 363.
- [5] M.W. Barsoum, T. Zhen, S.R. Kalidindi, M. Radovic, A. Murugaiah: Nature Mater. 2 (2003) 107.
- [6] H.-I. Yoo, M.W. Barsoum, T. El-Raghy: Nature 407 (2000) 581.
- [7] I.M. Low, S.K. Lee, B.R. Lawn: J. Am. Ceram. Soc. 81 (1998) 225.
- [8] I.M. Low: J. Eur. Ceram. Soc. 18 (1998) 709.
- [9] X.H. Wang, Y.C. Zhou: Acta Mater. 50 (2002) 3141.
- [10] M.W. Barsoum, M. Ali, T. El-Raghy: Metall. Mater. Trans. A 31 (2000) 1857
- [11] Y.C. Zhou, X.H. Wang: Mater. Res. Innovat. 5 (2001) 87.
 [12] X.H. Wang, Y.C. Zhou: Z. Metallkd. 93 (2002) 66.
- [13] M.W. Barsoum, I. Salama, T. El-Raghy, J. Golczewski, W.D. Porter, H. Wang, H.J. Seifert, F. Aldinger: Metall. Mater. Trans. A 33 (2002) 2775
- [14] I. Salama, T. El-Raghy, M.W. Barsoum: J. Alloys Compd. 347 (2002) 271.
- [15] I. Salama, T. El-Raghy, M.W. Barsoum: J. Electrochem. Soc. 150 (2003) 1.
- [16] S. Gupta, M.W. Barsoum: J. Electrochem. Soc. 151 (2004) 24.
- [17] Z.J. Lin, Y.C. Zhou, M.S. Li, J.Y. Wang: Z. Metallkd. 96 (2005) 291.
- [18] W. Jeitschko, H. Nowotny, F. Benesovky: Monatsh. Chem. 94 (1963) 672
- [19] Z.M. Sun, S. Li, R. Ahujab, J.M. Schneider: Solid State Commun. 129 (2004) 589.
- [20] B. Manoun, R.P. Gulve, S.K. Saxena, S. Gupta, M.W. Barsoum, C.S. Zha: Phys. Rev. B 73 (2006) 24110.
- [21] Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang: J. Am. Ceram. Soc. 89 (2006) 3765.
- [22] S. Gupta, D. Filimonov, M.W. Barsoum: J. Am. Ceram. Soc. 89 (2006) 2974.
- [23] Y.C. Zhou, Z.M. Sun, S.Q. Chen, Y. Zhang: Mater. Res. Innovat. 2 (1998) 142.
- [24] J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J.M. Schneider, H. Högberg, L. Hultman: Acta Mater. 55 (2007) 1479.

[25] C. Racault, F. Langlais, R. Naslain: J. Mater. Sci. 29 (1994) 3384.

Basic

- [26] J.P. Palmquist, T. El-Raghy, J. Howing, O. Wilhemsson, M. Sundberg: 30th Intern. Conf. Advanced Ceram. & Composites 2006. Abstract #ICACC-S1-184-2006.
- [27] B. Manoun, S.K. Saxena, T. El-Raghy, M.W. Barsoum: Appl. Phys. Lett. 88 (2006) 201902.
- [28] Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang: J. Mater. Res. 21 (2006) 2587.
- [29] J.C. Schuster, H. Nowotny: Z. Metallkd. 71 (1980) 341.
- [30] Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang: Acta Mater. 54 (2006) 1009.
- [31] T. El-Raghy, M.W. Barsoum: J. Am. Ceram. Soc. 82 (1999) 2849.
- [32] X.H. Wang, Y.C. Zhou: J. Mater. Chem. 12 (2002) 455.
- [33] A.G. Zhou, C.A. Wang, Y. Huang: Mater. Sci. Eng. A 352 (2003) 333.
- [34] Y. Yosida, I. Oguro: Physica C 434 (2006) 138.
- [35] H. Wiesenberger, W. Lengauer, P. Ettmayer: Acta Mater. 46 (1998) 651.
- [36] O.Yu. Khyzhun, V.A. Kolyagin: J. Alloys Compd. 363 (2004) 32.
- [37] J. Zhang, J.Y. Wang, Y.C. Zhou: Acta Mater. 55 (2007) 4381.

(Received May 20, 2007; accepted October 11, 2007)

Bibliography

DOI 10.3139/146.101598 Int. J. Mat. Res. (formerly Z. Metallkd.) 99 (2008) 1; page 8-13 © Carl Hanser Verlag GmbH & Co. KG

ISSN 1862-5282

Correspondence address

Dr. Yanchun Zhou Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016, China Tel.: +862423971765 Fax: +862423891320 E-mail: yczhou@imr.ac.cn

You will find the article and additional material by entering the document number MK101598 on our website at www.ijmr.de