Summer School of Advanced Functional Materials 2008-Shenyang

Making Ferromagnetic Metal MnSi Ultrathin film Ferromagnetic Semiconductor

Zhao-hua Cheng (成昭华)

 State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, P.R. China

 (中国科学院物理研究所磁学国家重点实验室)

磁性纳米结构与磁共振

磁性纳米结构与磁共振 单晶生长炉(2002) 电化学实验室(2003) MBE/SPM/SMOKE/MS(2004)

多电极磁输运 (2002)

穆斯堡尔谱仪 (2003)

电子自旋共振(2006)

磁性纳米结构与磁共振

磁学国家重点实验室 公共磁性测量和结构分析平台

物理所微加工

Outline

- Motivation
- Preferential arrangement and Controllable Growth of Mn Nanodots
- Fabrication of MnSi ultrathin film on Si(111)
- Magnetic and Magnetotransport Properties of MnSi Film on Si(111)
- Thickness-driven MIT Transition
- Summary

特征物理长度

Anomalous Magnetism in Small Mn Clusters

Fundamental Obstacles for Spin-injection

Epitaxial Growth of metal or metal Silicides on Si

MnSi(111) surface:A=B=0.645nm,C=1.17nm

Ferromagnetic and Metallic Properties of MnSi bulk intermetallic Compounds

FeSi, CoSi, NiSi weak, or non-magnetic

I. Motivation

P

Scaling Theory of Localization I. Motivation

 $\beta(g) < 0$ Localized state

D.J. Thouless, PRL,39,1167(1977) P.W. Anderson, PRL,43,718(1979)

Experimental Studies of Localization

Cu on glass 11.9nm

Ag/Si(111)-7×7

L. Van de dries, PRL 46, 565(1981)

PRB 45 11430

II. Preferential arrangement and Controllable Growth of Mn Nanodots Well-defined size of Si(111)-7 \times 7 reconstructed surface

Unit cell of Si(111)-7x7 DAS structure

dI/dV mapping

Room-temperature Growth

Complex the deposition and diffusion process

- Random distribution
- Irregular shape

0.35 ML

30×30nm²

Effect of Substrate Temperature

30×30nm²@RT

30×30nm²@120°C

30×30nm²@180°C

II. Preferential arrangement and Controllable Growth of Mn Nanodots Uniform Mn nanodots on Si(111)

II. Preferential arrangement and Controllable Growth of Mn Nanodots **Uniform Mn nanodots on Si(111) with various coverage**

Preferential arrangement

Effect of deposition rate on the proportion of Mn nanodots on unfaulted and faulted halves of Si(111)-7x7

0.167ML/min 13.41ML/min

30×30nm²@180 °C

State Key Lab. of Magnetism, IPCAS; http://maglab.iphy.ac.cn

15

Triangular structure

Honeycomb structure

State Key Lab. of Magnetism, IPCAS; http://maglab.iphy.ac.cn

0.05eV

P

Kinetic Monte Carlo Simulation

High Resolution STM image

Distance in a $\sqrt{3} \times \sqrt{3}$ **Reconstruction on Si(111) surface**

MnSi(111) surface:

MnSi(111) surface:A=B=0.645nm,C=1.17nm

Synchrotron XRD

Growth model of MnSi

139

Fig. 3. Schematic illustrations for explaining the mechanism of Mn silicide formation on the Si(111)-(7×7) surface. \bullet , Mn atoms; \bigcirc , Si atoms.

T. Nagao et al., Surf. Sci. 419(1999), 134

As-deposited

30×30nm²

Post-annealed

1000×1000nm²

Enhancement of Tc

Enhancement of Tc

Pressure effect on Tc

Enhancement of Tc

driven by epitaxial strain?

W. Yu et al., PRL, 92,086403(2004)

Enhancement of Tc

MnSi(111) surface:A=B=0.645nm,C=1.17nm

Enhancement of Tc

Enhancement of Tc

GMR Effect 24ML

Resistance (0)

V. Thickness-driven MIT Transition of MnSi films

V. Thickness-driven MIT Transition of MnSi films

weakly itinerant electron ferromagnetic

2D system – weak localization

Resistivity decreases logarithmically with T

IV. Thickness-driven MIT Transition of MnSi films

Hall Effect

$$R_H = R_0 H + R_S M$$

VI. Summary and prospective

- 1. MnSi ultrathin film can be epitaxially grown on Si(111)-7×7 surface .
- 2. Thickness-driven Metal to Insulator Transition was observed in MnSi ultrathin film
- **3. Temperature dependence of resistivity indicates a weak localization 2D-system.**
- 4. MnSi ultrathin film shows the advantages of both ferromagnet as well as semiconductor.
- 5. Investigation of morphology-dependent Magnetotransport provides a new idea for spintronics

Acknowledgements

MOST
NSFC
CAS

