张志东

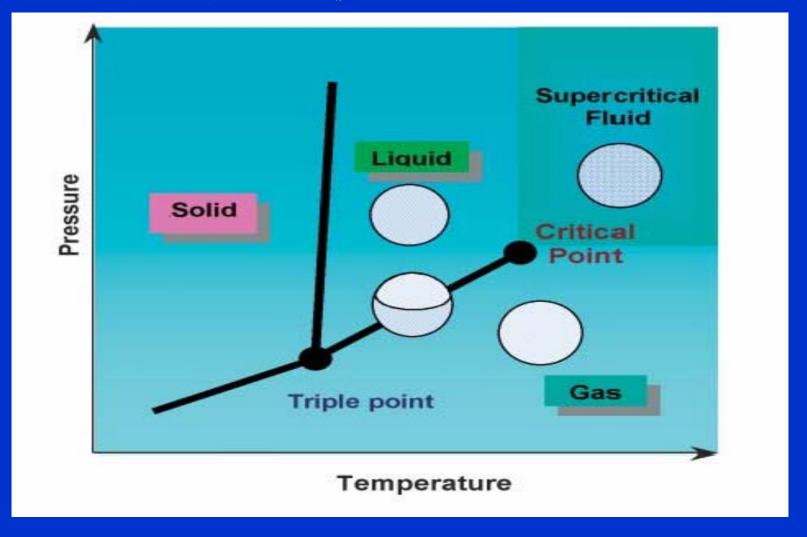
中国科学院金属研究所中国科学院国际材料物理中心

有序与无序

• 有序: 有秩 序、有规则、 低对称、低混 乱.....

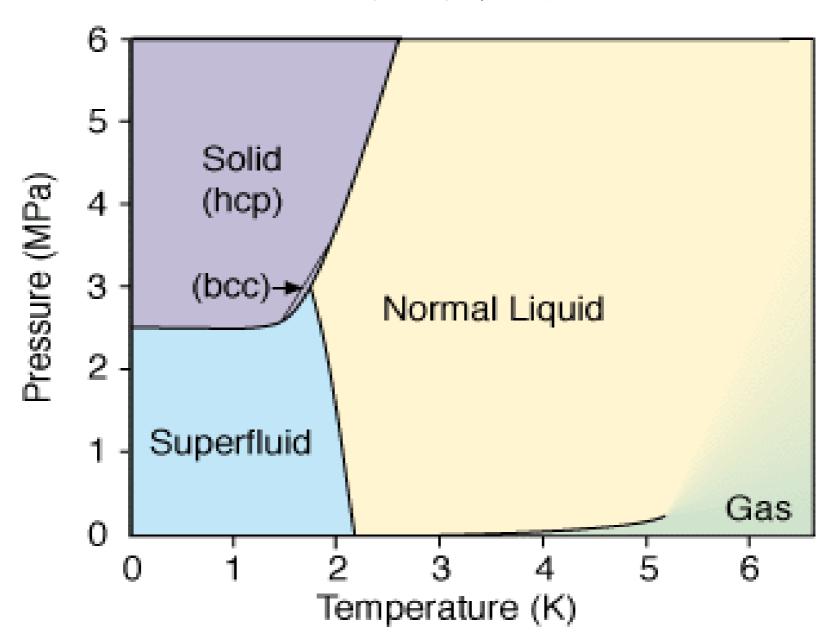
• 无序: 无秩 序、无规则、 高对称、高混

固、液、气相图



- •Water: $T_c = 374.15$ °c, $P_c = 221.2$ bar
- •carbon dioxide: $T_c = 31.04$ °c, $P_c = 73$ bar

4He的临界现象



4He的临界现象

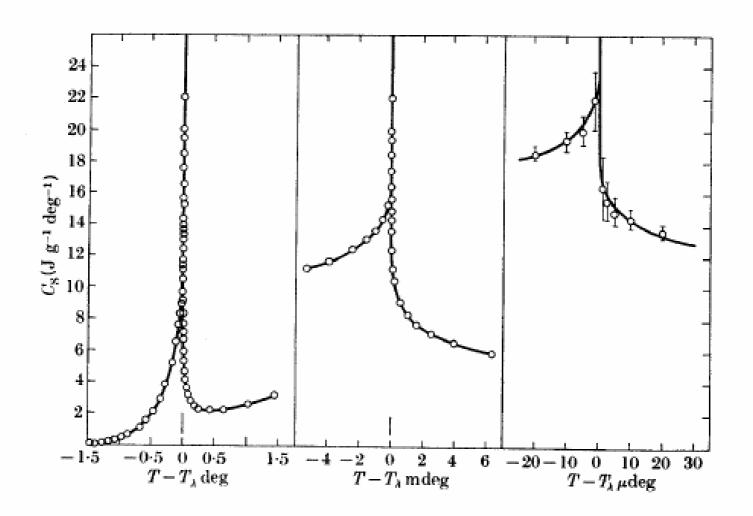
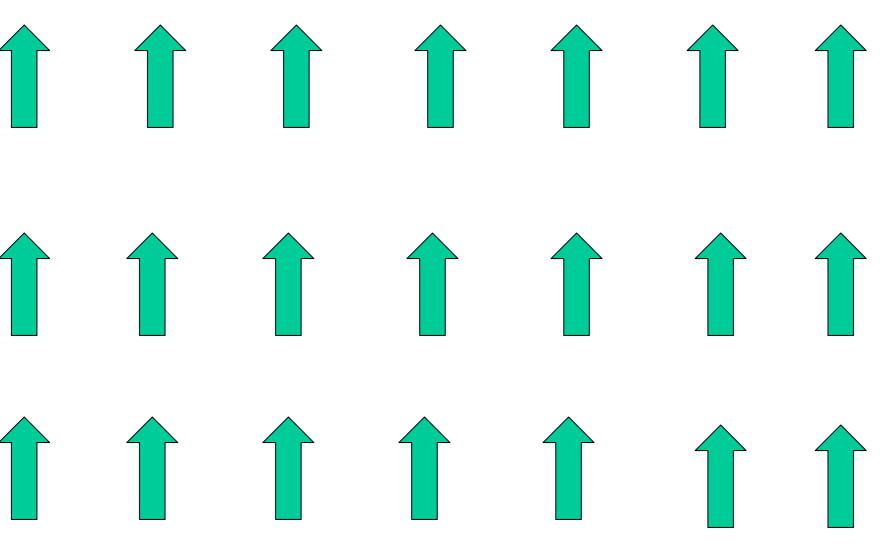


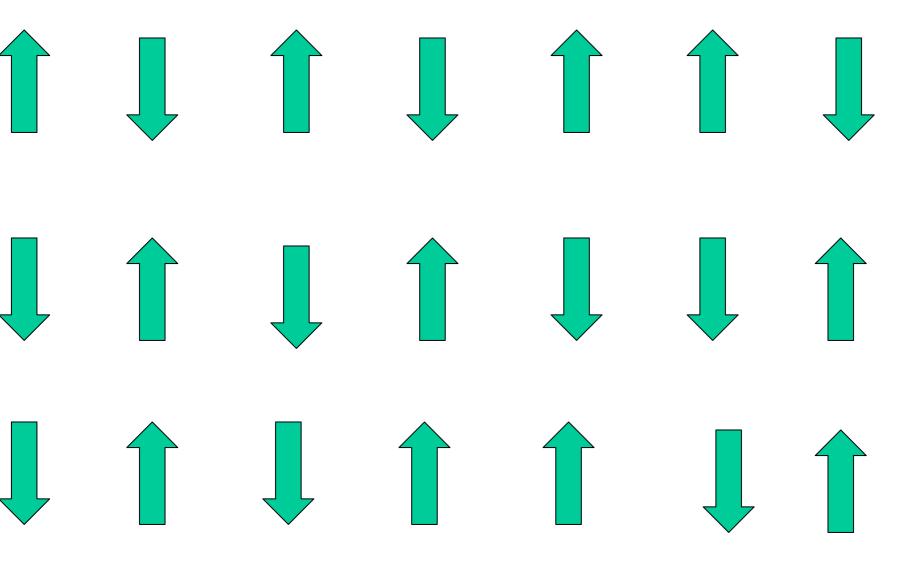
Figure 1 The famous "lambda-point" in the specific heat of ⁴He at the superfluid phase transition. (Stanley)

铁磁性

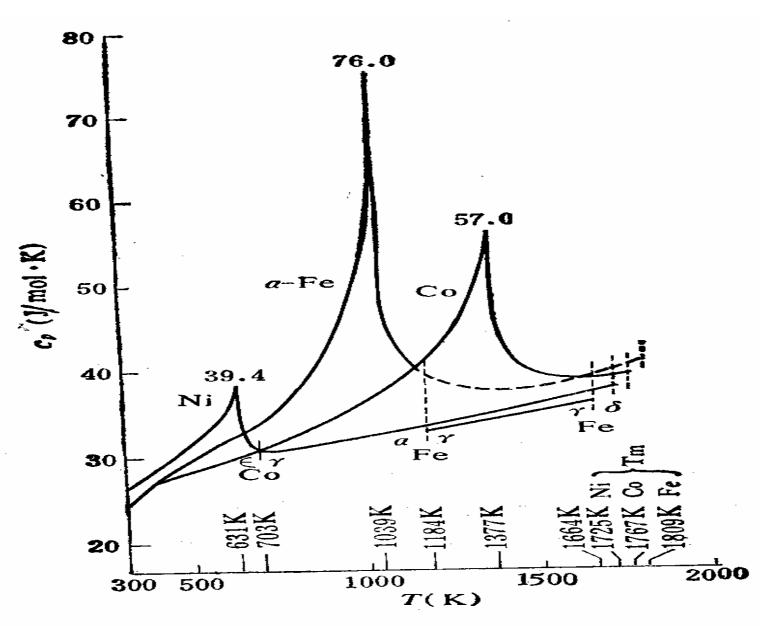
局域交换作用导致有序



顺磁性 温度导致无序



比热反常



Fe, Co, Ni 的 c_p -T 关系曲线.

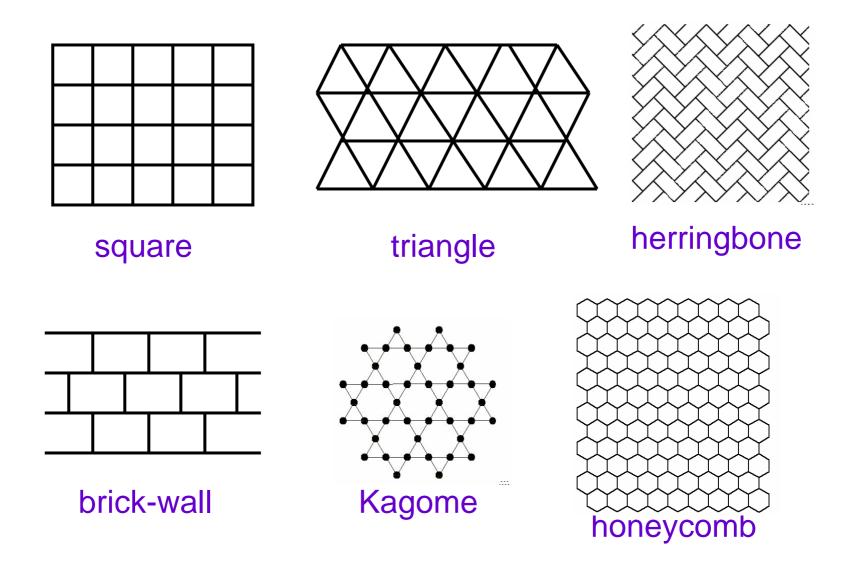
伊辛模型

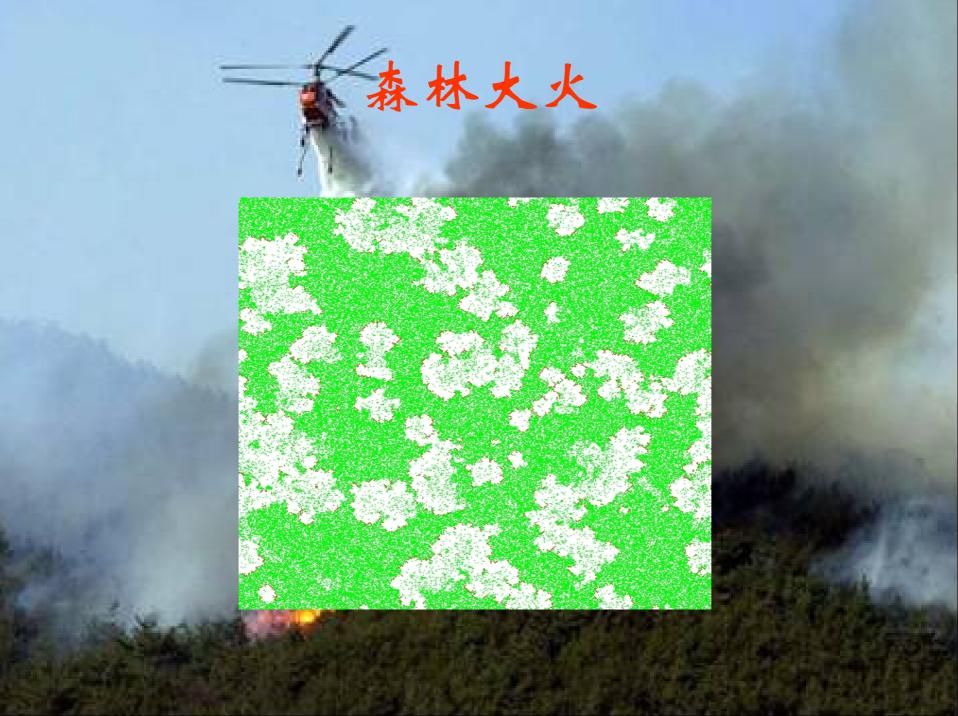
1925年伊辛 (Ising) 描写铁磁体的简化模型: 设有N 个自旋组成的 d 维晶格 (d = 1, 2, 3),第 l 格点自旋为 $S_i = \pm 1$ (i = 1, 2, •••, N; + - 分别 代表上下)

$$H = -J \sum_{\langle i,j \rangle} S_i S_j - g \mu_B H \sum_i S_i$$

只考虑最近邻作用,相互作用能为 J J>0 为铁磁性, J<0 为反铁磁性

Two-Dimensional (2D) Systems





伊辛模型

1D exact solution (Ising 1925):

Magnetization (磁化强度):

$$\frac{M}{g\mu_B N} = \frac{\sinh(g\mu_B H/k_B T)}{\sqrt{\left[\sinh(g\mu_B H/k_B T)\right]^2 + e^{-4J/k_B T}}}$$

当**H→0, M→0. T>0.** 在一维伊辛模型无自发磁化强度,无磁有序和磁性相变。

Specific heat (比热):

$$C_{H=0}(T,0) = Nk_B(\frac{J}{k_B T})^2 \sec h^2(\frac{J}{k_B T})$$

Susceptibility

(磁化率):

$$\chi_{H\to 0} = \frac{N(g\mu_B)^2}{k_B T} e^{4J/k_B T}$$

从三十年代开始,相变和临界现象的研究就是统计物理的一个重要的传统课题。由于相变理论必须考虑粒子之间的相互作用(理想Bose气体的BEC除外),使理论处理相当困难。

提出了一些模型和最简单的理论——平均场理论,以及在平均场理论基础上的改进,以及发展各种级数展开方法(如低温展开、高温展开等。原则上要找小参量)。

1944年Onsager给出两维Ising模型的严格解。

Bruria Kaufman给出了一个简便优雅的求解方案。求解伊辛模型时仅能引入一次周期性边界条件。这是由于伊辛模型是许多自旋之间的相互作用问题,是一个多体问题。

求解二维伊辛模型比一维复杂多了。一维将问题 简化为对2×2矩阵求能量本征值。二维就要面对两个 2^N × 2^N矩阵相乘后求能量本征值问题。首先将两个2^N × 2^N矩阵用泡利自旋矩阵表示,写成泡利自旋矩阵直 乘及其乘积的线性组合,构成这两个矩阵的自旋表 象:通过两个引理证明自旋表象矩阵的本征值对应于 相应的2N×2N转动矩阵的本征值;从转动矩阵具有特 殊的形式,可以列出容易求解的本征值方程,求出本 征值:返回去求出系统的能量本征值。

五十年代由于实验的改进,积累了许多有关临界现象的实验数据。严格解、级数展开和实验三方面,使研究人员认识到幂律能正确地描写临界点邻域的行为。

六十年代建立起临界现象的标度理论。经过 Kadanoff, Fisher等人的努力,最后,1971年 K.Wilson 发展了完整的重整化群理论。重整化群 理论与传统的相变理论不同,在概念和方法上另辟 蹊径,具有强大的威力,已成为研究临界现象的有 力理论方法,Wilson 也因此而获得1981年的Nobel 物理学奖。重整化群理论还得到广泛的应用(凝聚 态物理、宇宙学,.....)。

块体中的实验数据

Specific heat:
$$C = A^{\pm} |T - T_{\lambda}|^{-\alpha}$$

Space experiment:

$$\alpha = -0.0106 \pm 0.0004$$

(Lipa et al.)
$$A^+/A^- = 1.044 \pm 0.001$$

theory:
$$\alpha = -0.011 \pm 0.004$$

$$A^+/A^- = 1.046 \pm 0.002$$

临界指数理论和实验值

指数	平均场	2D伊辛	3D伊辛	重正化	实验	汽—液
a	0	0	0.125	0.110	≤0.16	~0.125
β	1/2	1/8	0.312	0.340	0.34	0.345
γ	1	7/4	1.25	1.241	1.33	1.20
δ	3	15	5.150	4.46		4.2
V	1/2	1	0.642	0.63		
η	0	1/4	0.055	0.037	0.07	

莫比乌斯带

- 猜想一: 三维伊辛模型的拓扑学问题可以被 在四维空间引入的一个附加的旋转解决,因 为在三维空间的扭曲和纽结可以被在四维空 间的旋转打开。我们可以在2^{N·L·O}空间(其中 $O=(N\cdot L)1/2)$ 进行这个旋转,它对应在 $2^{N\cdot L\cdot O}$ 空 间的自旋表象。同时,自旋表象矩阵及其对 应的旋转矩阵将在这种高维的空间被重新安 排和表示。
- 猜想二:用在[-1,1]范围内变化的权重因子wx,wy和wz作用在本征矢量来表达exp(i txπ/N),exp(i tyπ/L)和exp(i tzπ/O)在四维空间对系统的能谱的贡献。

• 三维伊辛模型对应于自旋表象中三个2N·L× 2^{N·L}矩阵相乘,相应地对应于三个 2NL×2NL转动矩阵。我们实际上要在2N·L·O 自旋表象空间,以及相应的2N×L×O旋转空 间来处理问题。分别多加了一个2^{N·L·O}自旋 表象矩阵相乘,对应地多加了一个2N×L×O 旋转矩阵相乘,同时将原来的三个2N·L× 2^{N·L}自旋表象矩阵、三个2NL×2NL转动矩 阵分别在 $2^{N\cdot L\cdot O}$ 和 $2N\times L\times O$ 空间重新安排和 表示。

• 三维伊辛模型三个转动矩阵中矩阵元的旋转 角分别为K*, K', K'', 分别对应于沿三个坐 标轴方向自旋间的交换作用常数与温度的比 例。考虑到存在的拓扑扭曲和纽结的特点, 我们将增加的转动矩阵中矩阵元的旋转角设 为K'''= K'K''/K。这代表了三维伊辛模型的 拓扑问题:沿三个坐标轴方向自旋间的交换 作用常数完全纠缠在一起,需要用这样的具 有不同常数纠缠在一起的旋转打开。

简单正交晶格的配分函数:

$$N^{-1} \ln Z = \ln 2 + \frac{1}{2(2\pi)^4} \int_{-\pi - \pi - \pi - \pi}^{\pi} \int_{-\pi - \pi - \pi - \pi}^{\pi} \ln \left[\cosh 2K \cosh 2(K' + K'' + K''') - \sinh 2K \cos \omega' \right] d\omega' d\omega_x d\omega_y d\omega_z$$

$$- \sinh 2(K' + K'' + K''') (w_x \cos \omega_x + w_y \cos \omega_y + w_z \cos \omega_z) d\omega' d\omega_x d\omega_y d\omega_z$$

居里温度的条件:

$$\cosh \gamma_0 = \cosh 2(K^* - K' - K'' - K''')$$

简单正交晶格居里温度的条件:

$$K^* = K' + K'' + K'''$$

$$KK^* = KK' + KK'' + K'K''$$

$$\sinh 2K \cdot \sinh 2(K'+K''+K''') = 1.$$

$$\tanh^{-1} e^{-2K} = K' + K'' + K'''$$

简单立方晶格居里温度的条件:

$$K^* = 3K$$

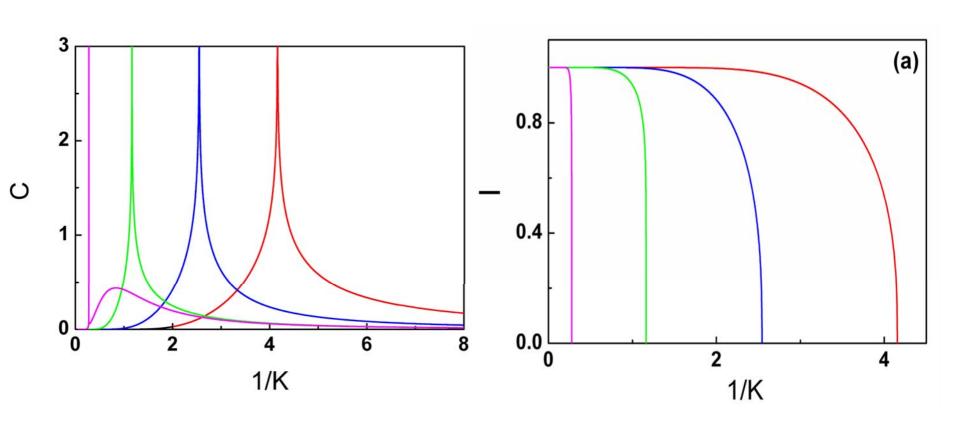
$$x_c = e^{-2K_c} = \frac{\sqrt{5} - 1}{2} = 0.61803398874989484820458683436563811.....$$

$$\sinh 2K_c = \frac{1}{2},$$

$$\cosh 2K_c = \frac{\sqrt{5}}{2} \,,$$

$$K_c = 0.24060591....$$

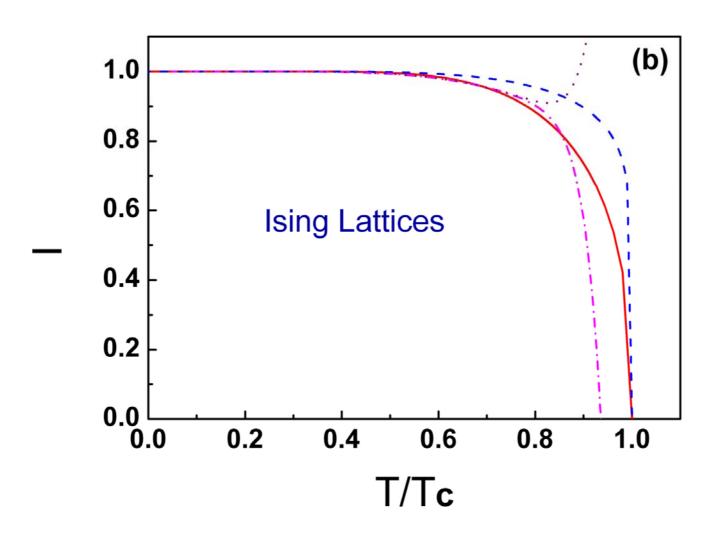
$$\frac{1}{K_c} = 4.15617384...$$



比热

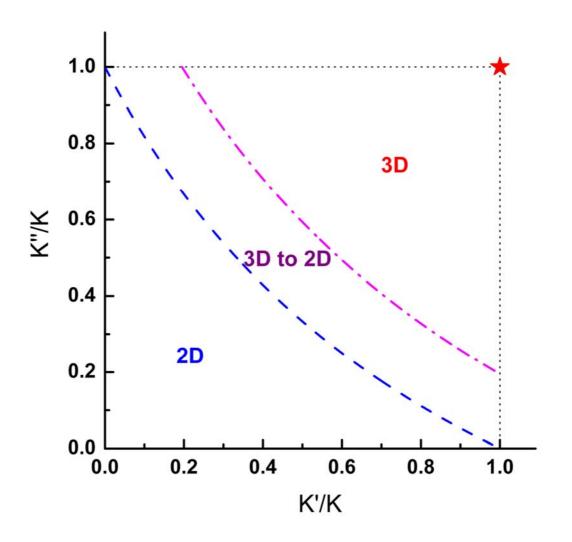
自发磁化强度

2D和3D自发磁化强度



临界指数

Ising	α	β	γ	δ	η	ν
1D Exact			2	∞	1	2
2D Exact	О	1/8	$\frac{7}{4}$	15	$\frac{1}{4}$	1
3D Exact	0	$\frac{3}{8}$	<u>5</u>	$\frac{13}{3}$	1/8	$\frac{2}{3}$
4D MF	0	$\frac{1}{2}$	1	3	0	$\frac{1}{2}$
3D	0.077	0.340	1.244	4.46	0.037	0.626
WK-RG						
3D	0.110	0.3265	1.2372	4.789	0.0364	0.6301
PV-MC						
3D	0.125	0.312	1.250	5.150	0.055	0.642
WK-SE	-					
	±0.015	±0.003	±0.003	±0.02	±0.010	±0.003
3D	$\frac{1}{16}$	5	$\frac{21}{16}$	<u>26</u>	$-\frac{1}{21}$	31
F(T <t<sub>c)</t<sub>	16	16	16	5	31	48
3D	$\frac{1}{8}$	<u>5</u> 16	<u>5</u> 4	5	0	<u>5</u> 8
$F(T>T_c)$	8	16	4			8



从三维到二维临界指数的过渡

巧合

- 1) 推定的本征值、本征矢量、配分函数、居里温度以及其它物理性能,结果可以自动返回一、二维伊辛模型。
- 2) 推定的简单立方伊辛模型的居里温度低于所有不同的近似方法(包括分子场理论及其改进理论、Wakefield方法、Bethe近似、Kirkwood方法、低温级数展开、高温级数展开、重正化群理论、蒙特-卡罗模拟等)获得的结果。
- 3)结果与五十年代Kikuchi方法估计的居里温度范围的最低值极限非常接近,误差在1.6%的范围。与五十年代Oguchi估计的居里温度范围4.16667 < 1/Kc < 4.7619的低值极限完全吻合,实际上正好落在Oguchi估计的最低可能值的边界上,误差在~0.25 %。
- 4) Rosengren猜想的第一个因子tanh Kc = (sq(5) 2) 与推定的三维简单立方伊辛模型的居里温度完全一致!

巧合

- 1) 推定的三维简单正交伊辛模型临界指数满足标度律,并对整个体系具有普适性。
- 2) 学术界公认级数展开、重正化群理论和蒙特-卡罗模拟等方法对临界指数γ的数值计算结果最精确。推定的临界指数γ与C.Domb和M.E. Fisher根据数值计算的结果提出的猜想γ = 5/4完全一致。
- 3) 推定临界指数β和δ与Vicentini-Missoni的综述中 收集的被认为是最可信的实验数据符合得很好。
- 4) 推定的临界指数几乎是与真实流体的临界指数 γ , δ , η 和 ν 完全相等。
- 5) 推定的临界指数μ和ν在实验误差范围内与两相流体的临界指数吻合。
- · 6)大家同意临界指数α等于零以及选择临界指数γ作为近似计算结果中最精确的一个临界指数,推定的临界指数与近似结果和实验数据非常接近。

简单立方晶格居里温度的条件:

$$K^* = 3K$$

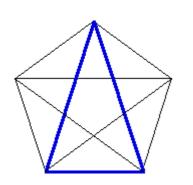
$$x_c = e^{-2K_c} = \frac{\sqrt{5} - 1}{2} = 0.61803398874989484820458683436563811.....$$

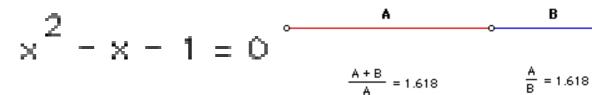
$$\sinh 2K_c = \frac{1}{2},$$

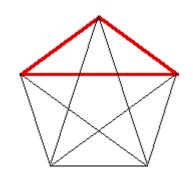
$$\cosh 2K_c = \frac{\sqrt{5}}{2} \,,$$

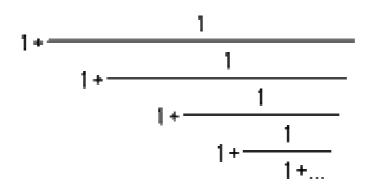
$$K_c = 0.24060591....$$

$$\frac{1}{K_c} = 4.15617384...$$

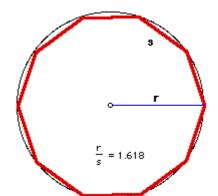


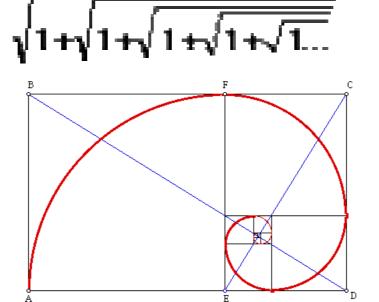


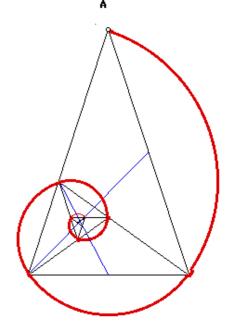




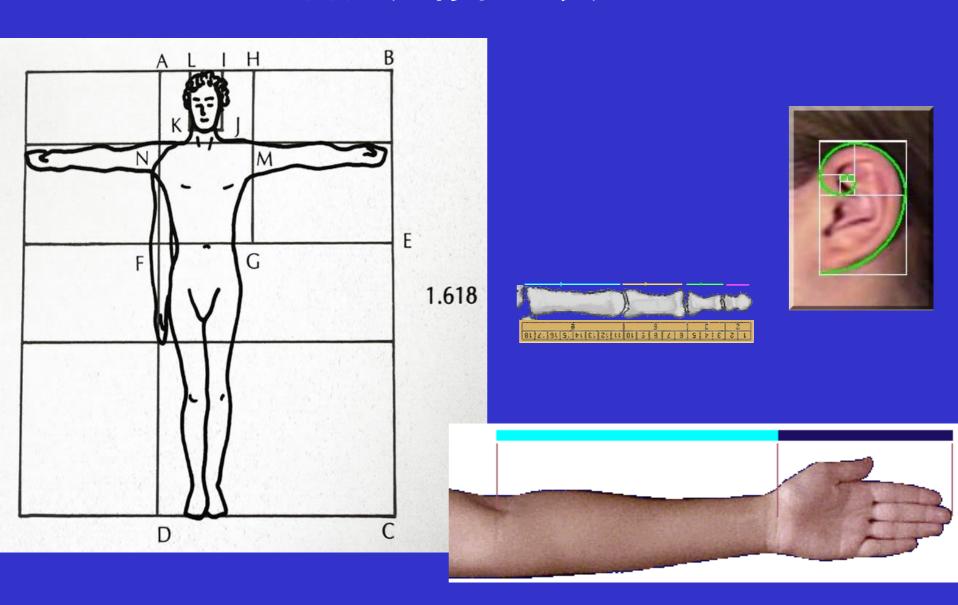
В

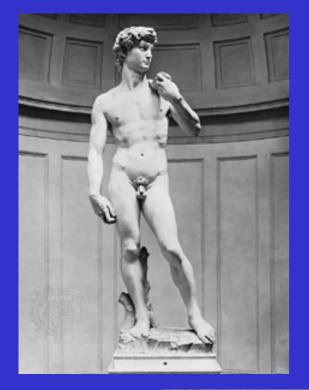






自然界存在的黄金解







Spiral Galaxy M81

Spitzer Space Telescope • IRAC

详细内容

- Zhi-dong Zhang, Conjectures on exact solution of three dimensional (3D) simple orthorhombic Ising lattices, Philosophical Magazine 87 (2007) 5309.
- http://www.sciencenet.cn/blog/张志东.htm

今后的工作重心

- 1) 三维伊辛模型存在其它解的可能性;
- 2) 从数学上证明猜想的严格性;
- 3) 严格证明三维伊辛模型的低温级数展 开的收敛半径为零;
- 4)猜想和推定的精确解的深层次物理内涵。

三维伊辛模型的精确解

