Nanomagnetism and Magnetic Nanoparticles for Biomedical Application

You Qiang*, Amit Sharma, Jiji Antony, Alan McConnaughey, Ryan Souza and Yufeng Tian

Department of Physics, University of Idaho, Moscow, ID 83844-0903

*Corresponding author: E-mail: youqiang@uidaho.edu, Telephone: (208) 885-7558, Fax: (208) 885-4055

IMR Shenyang Summer School July 9-10, 2008

Magnetococcus-MC-1

Type of organism	General name	Latin name	Localisation of MNP	Type of MNP	
Micro- organisms	Magnetotactic bacteria	Magnetospirillum sp.	magnetosomes	Fe ₃ O ₄	
-	Algae		magnetosomes cells	Fe ₃ S ₄ Fe ₃ O ₄	
Protozoa			cells	Fe ₃ O ₄	
Insect	Honeybee Migratory ant	Apis mellifera Pachycondyla	abdomen abdomen	Fe ₃ O ₄ Fe ₃ O ₄	
	Termites	marginata Nasutitermes exitiosus	thorax, abdomen	Fe ₃ O ₄	Magnetite
		Amitermes meridionalis	thorax, abdomen	Fe ₃ O ₄	
Fish	Atlantic salmon	Salmo salar	lateral line	Fe ₃ O ₄	
	Sockeye salmon	Oncorhynchus nerka	skull	Fe ₃ O ₄	
	Rainbow trout	Oncorhynchus mykiss	olfactory lamellae	Fe ₃ O ₄	
	Chum salmon	Oncorhynchus keta	head	Fe ₃ O ₄	
Amphibians	Eastern red- spotted newt	Notophthalmus viridescens	whole body	Fe ₃ O ₄	
Birds	Bobolink	Dolichonyx oryzivorus	upper beak	$\mathrm{Fe}_3\mathrm{O}_4$	
	Homing pigeon	Columba livia	upper-beak skin	Fe ₃ O ₄	
Mammals	Common Pacific dolphin	Delphinus delphis	dura mater	Fe ₃ O ₄	
	Human	Homo sapiens	brain, heart	Fe ₃ O ₄	
			2,	<u>c</u> Univ	ersity of Idaho

Table 1. Examples of organisms synthesizing magnetic nanoparticles (MNP)

Change, Excellence,

MNPs for biomedical applications

- 1. Biological labels
- 2. Drug and gene delivery
- 3. Bio detection of pathogens
- 4. Detection of proteins
- 5. DNA Probing
- 6. Tumor destruction via heating (hyperthermia)
- 7. Separation and purification of molecules and cells
- 8. MRI contrast enhancement

- These applications require that MNPs be superparamagnetic at room temperature, high magnetic moment and monodispersive.
- Most magnetic particles or beads used in biomedical applications are based on ferromagnetic iron oxides with low magnetic moment (20 to 50 emu/g), and polydispersive.
- Our newly developed nanocluster source can synthesize monodispersive, high magnetic moment core-shell structured nanoparticles for biomedical applications.

Product name	Composition	Particle size (nm)	Application	Manufacturer or supplier
Combidex	Magnetic iron oxides – dextran	17–20	Magnetic resonance contrast agent	Advanced Magnetics, USA
Endorem ^a / Feridex ^b	Magnetic iron oxides – dextran	100-250	Magnetic resonance contrast agent	Advanced Magnetics, USA
MicroBeads	Magnetic iron oxides – dextran	50	Separation and labelling of cells and molecules	Miltenyi Biotec, Germany
Nanomag	Magnetic iron oxides – dextran	100	Magnetic labelling	Micromod Partikeltechnologie, Germany
Resovist	Magnetic iron oxides – dextran	57	Magnetic resonance contrast agent	Schering AG, Germany

Table 2. Examples of commercially available biocompatible magnetic nanoparticles

^a Commercial product name in Europe; ^b commercial product name in the United States

Problem:

- Small specific magnetic moment $(m_s) < 50 emu/g$,
- Large size distribution
- Aggregation in solutions

Fig. 1. A schematic qualitative relation between the coercivity and the magnetic grain size.

ance.

Diamagnetic, Paramagnetic, and Ferromagnetic Materials

 $T > T_{b}, H_{c} = 0 \qquad T < T_{b}$

Superparamagnetic behavior

MPMS XL7 SQUID System, Quantum Design Inc

Supported by NSF Idaho-EPSCoR

ZFC and FC measurements

As deposited

After magnetization, 10 kOe, in plane

Magnetic Drug Delivery

 V_m and ΔB as small as possible, m_s as large as possible F_m (magnetic force) >> F_d (drag force)

 $\mathbf{M} = \mathbf{m}_{\mathbf{s}} \mathbf{x} \mathbf{V}_{\mathbf{m}}$

 $\mathbf{F}_{\mathbf{m}} \sim \mathbf{f} (\mathbf{M} \text{ and } \Delta \mathbf{B}) \\ = \mathbf{f} (\mathbf{m}_{\mathbf{s}}, \mathbf{V}_{\mathbf{m}} \text{ and } \Delta \mathbf{B})$

 $F_d \sim f(\eta, V_m \text{ and } \Delta v)$

Hyperthermia A new way to treat cancer

The amount of heat generated per unit volume in NP is given by:

$$P_{FM} = \mu_0 f \oint H dM \qquad P_{SPM} = \mu_0 \pi f \chi'' H^2$$

Frequency and magnetic moment dependence

Fe is not stable in many environments. What is new at the nanoscale?

Nanoparticles Properties vary with: •Size •Shape •Impurity •Time (stability) •Environment

Nanoparticle Synthesis

- a) Sol-Gel : gelation, precipitation, and hydrothermal treatment
 - *i.* Borohydride reduction (Zhang Nano Fe)
 - ii. Inverted micelles
 - iii. Polymer matrix architecture, block copolymers, Polymer blends
 - iv. Porous glasses
 - v. Ex-situ particle capping
- b) Gas phase : nucleation and growth
 - i. combustion flame
 - ii. plasma
 - iii. laser ablation
 - iv. chemical vapor condensation
 - v. spray pyrolysis, Electrospray, plasma spray
- c) Other Synthesis Strategies
 - i. Sonochemical (Toda)
 - ii. Cavitation
 - iii. Microemulsion
 - iv. High energy ball milling

Two Fe nanoparticles used in remediation testing

1: From W. Zhang, Lehigh University

Borohydride reduction

1.6 M NaBH₄ (aq) to 1.0 M FeCl₃*6H₂O solution.

2: From Toda Kogyo Inc, NIZ 100 Reactive Nanoscale Iron Particles.

Sonochemical processing, Ferrous ion precipitated with NaOH?

Zhang-. Bright- and dark field images. Note the core-shell Structure as well internal structures

Each particle is composed of ordered atom clusters!

XPS Analysis	B1s	C1s	O1s	Na1s	S2p	Fe2p
Atomic %	14.31	10.35	44.03	12.94	0.46	17.92

Instability

Zhang: the disappearing of the surface layer with time under electron beam for ~ 10 min in vacuum and 5 min in air.

Toda: Oxide shells disappeared in air about 5 min.

Sputtering-Gas-Aggregation Source

- Deposition rate > 5 Å/s,
- Ionization rate > 60%, (35% positive charged ion, 30% negative charged ion for Cu clusters),
- Controlled size range 1 to 100 nm

Cluster Deposition System

Cluster size: D = 1 to 100 nm Materials:Co, Fe, Ni, Ag, Al, Cu, Mg, Mo, ZnO Si, Ti, CoPt, FePt, TiN, TiAlN, Al₂O₃

Cluster Deposition System

Nanoclusters and Size Distribution

History of SGA Cluster Source

1st generation, University of Freiburg, 1994, ~ 0.1 mg/h generation, University of Nebraska-Lincoln, 2000, ~1 mg/h 2nd 3rd generation, University of Idaho, 2002, ~20 mg/h generation (testing), University of Idaho, 2007, ~2 g/h 4th generation, 200?, up to kg/h Nth

27

Core-Shell (Fe/Fe Oxide) Nanoparticles

5 nm

sphere 10 nm tetrahedron 25 nm hexahedron 35 nm

50 nm

octahedron 70 nm

81 nm

Nanoparticle Stability and Aging

Oxide shell thickness increases for small nanoparticles. no pure Fe core for d < 6 nm. No change in air about 6 months. Aging process of Core-shell Fe NPs exposed in water measured by XRD. 15 time slower than that of Toda NPs (50 nm).

HRTEM showing shell is a crystalline phase

As deposited

Annealing at 250 C, 3 hrs in air

ISSN 0957-4484

www.iep.erg/journals/nano

Featured article:

Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation C M Wang, D R Baæ, J E Amonette, M H Engelhærd, Y Qiang and J Antony

IOP Publishing

soft landing Fe nanoclusters

Nanoclusters disperse in solution uniformly w/o surface stabilizer 36

Magnetic separation

Tradition. Change. Excellence.

Specific Magnetic Moment of Core-Shell Nanoclusters

Superparamagnetic when the size less than 15 nm!

MNPs are uptaken by cancer cells

- Uniform dextrin coated and uncoated our ironiron oxide core-shell NPs are incubated with LX-1 small cell lung cancer (SCLC) cells in rats without protamine.
- Commercially produced nanoparticles namely Feridex was also incubated with cancer cells with protamine.
- Protamine was added to Feridex samples to prevent the coagulation of cells.

Feridex a well known aqueous colloid of superparamagnetic iron oxide associated with dextrin for intravenous administration was used to label the uncontrolled sample. Feridex was incubated with cancer cells and was used as a standard to compare with MNP's produced in our lab incubated with cancer cells. Protamine sulfate was used to prevent the coagulation of cells. The results of all the samples were compared with the controlled samples. Control samples are the samples which used as a standard reference for samples treated with nanoparticles. This helps in verifying the consistency of the experiment. We tested the noncoated and coated MNP's for toxicity and uptake.

Results

250µl pure core-shell NPs incubated by the LX-1 SCLC cancer cells

No Protamine

250µl dextrin coated Core-shell NPs incubated by the LX-1 SCLC cancer cells

No Protamine

250µl Feridex incubated by the LX-1 SCLC cancer cells

10 microgram protamine

Magnetic Resonace Imaging

Punkhurst et al. J.Phys.D.36 (2003) R167.

Illustration of magnetic resonance for a large ensemble of protons with net magnetic moment *m* in the presence of a external magnetic field **B**₀.

In (a) the net moment precesses around B_0 at the characteristic Larmor frequency, ω_0 .

In (*b*) a second external field is applied, perpendicular to \boldsymbol{B}_0 , oscillating at ω_0 . Despite being much weaker than \boldsymbol{B}_0 , this has the effect of resonantly exciting the moment precession into the plane perpendicular to \boldsymbol{B}_0 .

In (*c*) and (*d*) the oscillating field is removed at time zero, and the in-plane (*c*) and longitudinal (*d*) moment amplitudes relax back to their initial values.

$$m_z = m(1 - e^{-t/T_1})$$
$$m_{x,y} = m\sin(\omega_0 t + \phi)e^{-t/T_2}$$

The relaxation time T₂

Without NP Contrast agents

With NP Contrast Agents.

$$F_m = \frac{\chi V}{2\mu_0} \nabla B^2 \qquad F_d = 6\pi R \eta \nabla V$$

$$|F_m| \ge |F_d| \Longrightarrow \nabla B \ge 30T / meter$$

 χ is the MNP's susceptibility; R is MNP's radius (10 nm); η – the medium viscosity; v is the streamline velocity

44

Acknowledgment

Collaborators:

- **Dr. Donald R. Baer,** *Pacific Northwest National Laboratory*
- Dr. C. M. Wang Pacific Northwest National Laboratory
- Prof. Leslie Muldoon, OHSU, Medical School

Financial supported by:

- NIH-INBRE (P20RR016454),
- DOE-BES (DE-FG02-06ER15777),
- Murdock Charitable Foundation
- Battelle/PNNL

Selected Publications:

- Jiji Antony, You Qiang, Donald R. Baer and Chongmin Wang, "Synthesis and Characterization of Stable Iron-Iron Oxide Core-Shell Nanoclusters for Environmental Applications" J. of Nanoscience and Nanotechnology, 6 (2006) 568-572
- You Qiang, Jiji Antony, Amit Sharma, Joseph Nutting, Daniel Sikes and Daniel Meyer, "Iron/iron Oxide Core-Shell Nanoclusters for Biomedical Applications", J. of Nanoparticle Research, (2006) 8: 489-496
- Wang, CM, DR Baer, LE Thomas, JE Amonette, J Anthony, Y Qiang, and G Duscher.
 "Observations of Cation Diffusion and Void Formation during Early Stages of Passivation: Initial Oxidation of Iron Nanoparticles at Room Temperature", J. of Applied Physics 98 (2005) 094308.
- 4. Joseph Nutting, Jiji Antony, Daniel Meyer, Amit Sharma, and You Qiang, "The effect of particle size distribution on the usage of the AC susceptibility in biosensors", J. of Applied Physics, 99, 08B319 (2006)
- 5. Amit Sharma, You Qiang, Pawel Karnacki, Andrzej Paszczynski, Daniel Meyer, Joseph Nutting, and Jiji Antony, "Dramatic increase in stability and longevity of enzymes attached to monodispersive iron nanoparticles", IEEE Transactions on Magnetics, 43 (2007) 2418.
- 6. Leslie L. Muldoon, You Qiang, Edward A. Neuwelt, et, al. "Imaging and nanomedicine for diagnosis and therapy in the CNS: Report of the eleventh annual blood-brain barrier disruption consortium meeting", American Journal of Neuroradiology, 27:715-721, March 2006.
- 7. Amit Sharma, You Qiang, Daniel Meyer, Ryan Souza, Alan Mcconnaughoy, Leslie Muldoon, and Donald Baer, "Biocompatible core-shell magnetic nanoparticles for cancer treatment", J. of Appl. Phys, 103 (2008) 07A308.

THE END

