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Introduction

The search for ferromagnetic materials suitable for 
application in semiconductor spintronics devices. 

To allow efficient spin injection into the semiconductor, 
these materials must satisfy at least the following

1) Curie temperature significantly higher than the room 
temperature, the working temperature of semiconductors 
used industrially.

2) A very high spin polarization of the electron states at the 
Fermi level.



Heusler alloys were predicted to be Half-metals



Half metal
key material candidate for spintronics
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Nonmagnetic vs. Magnetic Materials
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Heusler alloys of  Higher-spin-polarization
(much higher than the conventional ferromagnetic metals)

• spin polarization of the Co2MnSi Heusler
compound has been estimated to be 61% at 10 K. 

(Kammerer et al. APL85, 79,(2004))

• Point-contact Andreev reflection measurements of the 
spin polarization yield polarization values for Co2MnSi and 
NiMnSb of 56% and 45%, respectively 
(L. Ritchie  et al., Phys. Rev. 68, 104430(2003)).



Polarization of Ferromagnetic 
materials



Ferromagnetic shape memory 
alloys

Ferromagnetic Heusler alloys are well 
known ferromagnetic shape memory 
alloys
– Martensitic transformation
– Magnetic field induced strain 
– Applications in actuators 
– ….



Typical Heusler alloys -Ni2MnGa



Characteristics 
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Mechanism of field induced strain



Characteristics of Ni2MnGa

• High temperature phase (or austenite) : 
ferromagnetic, low magnetic anisotropy 
cubic lattice   

• Low temperature phase (martensite):
ferromagnetic, strong magnetic anisotropy, 
tetragonal lattice 

• Both phase are ferromagnetic metals



Transition temperature shifts very slightly

M(T) curves with different applied magnetic fields
F. Zuo et al PRB58,11127(1998)



Temperature depedennt reistivity
Temperature-dependent resistivity 

Zuo et al, J. Phys.: Condens. Matter 11 (1999) 2821–2830.)



CoNiGa alloys
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Ni2MnCoIn crystals
Nature 439, 957(2006)
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Ni50Mn50-xInx single crystals
(x=14-16.3)

• single crystals were grown at a rate of 5–30 
mm/h using a Czochralski instrument with a cold 
crucible system

• X-ray: High temperature phase is L21-type 
ordered structure with a lattice constant 
a=6.006Å. 

• Cooling to 93K, the crystal structure changes to 
an orthorhombic structure with a rather complex 
martensitic modulated sub-structure. 



Magnetic, electrical and thermal 
transport measurements

• Magnetic measurements: Quantum 
Design SQUID magnetometer, 2-400 K, 5 
Tesla

• Transport measurements: Quantum 
Design Physical Property Measurement 
system (PPMS), 2-400 K, 9Tesls

• Specific Heat: PPMS
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M(T) and ρ(T) in different fields

Features:

(1) The martensitic transformation 
with  thermal hysteresis.

(2) Martensitic transformation is 
magnetic field dependent. 

(3) Magnetic field shift transition to 
lower temperature.

(4) The transformation can be totally 
suppressed by magnetic field.

(5) Currie temperature Tc=315K

(6) Low-T martensite  is ferrimagnetic,  
poor metal. 

(7) High T, ferromagnetic austenite, 
metal

(8) Martensitic transformation is 
accompanied by a metal-poor 
metal transition.

GMR in a broad temperature range

(APL91,2007)
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Giant MR and Tunneling MR
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M(H) and MR(H) in different 
fields

M(H) curves indicate a 
metamagnetic
behavior or field-induced phase 
transition

ρ(H) or MR (H) has the similar 
transition fields



Superzone Gap
Superzone gap: 
The antiferromagnetic lattice does not 

commensurate with the crystal lattice, which 
leads to a new Brillouin boundary 

(a gap appearing on the Fermi surface).

• In intermetallic alloys, the large MR results from 
the collapsing of the “superzone gap” due to field 
induced first order phase transition. 
(UNiGa, PRL77,5253).
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Ni50Mn33.7In16.3 single crystal

Showing the similar martensitic
transformation, metal-poor metal 
transition, GMR and Giant Thermal
conductivity.  

Free electron Wiedemann-Franz law 

281045.2 −− Ω== KWxLT
k
σ

the upper bound for Δκel

The sum of Δκel and zero-field κ
gives total κ



0.0 2.0 4.0 6.0 8.0
0

20
40
60
80

100

-60

-40

-20

0

H (T)

T=60 K

Δκ
/κ

 (%
)

Δρ
/ρ

 (%
)

M(H) and MTC(H) in different fields

The largest magneto-thermal conductivity
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Specific heat measurement
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Specific heat measurement 
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MR obtained from Specific Heat 
measurement
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Conclusion

Large magnetoresistance (MR)  and 
magnetothermal  conductivity are due 
to the collapse of  Superzone gap, 
when the magnetic field induced 
ferrimagnetic to the ferromagnetic 
phase transformation happens 



A combined giant inverse and 
normal magnetocaloric effect for 

room-temperature magnetic 
cooling

(PRB76,2007)



Magnetocaloric effect (MCE)
H, T2
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Ferromagnet
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Only near the TC, dM/dT is large, leads to a significant MCE
Room temperature application: GdGeSi , LAFeSi alloys 



Ni50Mn33.13In13.90 single crystal
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Metamagnetism vs Phase-transition
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Calculation of entropy change 
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Entropy change vs temperature
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Loading

Heat exchanger
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