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The thermal evolution of first-order magnetization processes~FOMP’s! is intensively studied within a
description of the anisotropy energy of a single-ion one-sublattice system with two or three anisotropy con-
stants. By following the temperature-induced trajectories in the anisotropy-parameter plane, all possible types
of thermal evolution of the FOMP are detected by an effective parameter method in the mean-field approxi-
mation. Within the two-constant approximation, three types of thermal behavior of the FOMP are found.
Within the three-constant approximation, 12 types are found when the zero-temperature second-order anisot-
ropy constantK1

0 is positive, and 14 types whenK1
0 is negative. Phase diagrams for the existence condition of

thermal behavior of the FOMP are given in the zero-temperature anisotropy space in combination with ana-
lytical and numerical calculations. For each type of variation of the FOMP, an example is selected to describe
the temperature dependence of the normalized amplitude and the critical field of the magnetization jump. The
relation between the type of variation of the FOMP and the spin-reorientation transition is discussed in detail.
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I. INTRODUCTION

Ferromagnetic materials may show jumps in magnet
tion for certain combinations of anisotropy constants.1 These
so-called first-order magnetization processes~FOMP’s! have
been observed in a large variety of magnetic materials2–7

The nature of this phenomenon is the same as that of a
continuous spin-reorientation transition~SRT!, which may be
found with changing temperature. A FOMP occurs betwe
two inequivalent minima of free energy that correspond
two particular directions of the magnetization vectorM , and
is an irreversible rotation of the magnetization vectorM be-
tween two inequivalent magnetization statesM1 and M2 in
an external magnetic field. During the FOMP, the mom
reorientation must overcome an energy barrier which may
equal to the energy maximum between the two ene
minima or to the energy needed for the nucleation and
placement of domain walls, depending on the magnetiza
mechanism of the jump, e.g., coherent rotation or doma
wall nucleation and displacement. If thermal excitati
cannot supply enough energy for the magnetic momen
surpass the energy barrier, hysteresis will be present in
magnetization curve, which is a common feature of fir
order transitions. However, it is usually difficult to obser
the hysteresis in FOMP’s, except perhaps at very l
temperatures.8 This is probably due to the low-energy barri
between the two states or to the very low coercivity which
0163-1829/2002/65~10!/104414~16!/$20.00 65 1044
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inherent to this kind of magnetization process.
Asti and Bolzoni9 carried out a complete phenomenolog

cal analysis of FOMP’s in uniaxial crystals within a thre
constant approximation to the anisotropy energy. Six type
FOMP’s ~A1, A1C, A2, P1, P1C, and P2! were defined,
whereA (P) means that the magnetic field is applied para
~perpendicular! to thec axis. If the final state after the tran
sition is the saturation state, the FOMP is of type 1; oth
wise it is of type 2. The letterC denotes that the uniaxia
anisotropy is of easy-cone type. Analytical expressions, co
puted plots, and diagrams of the critical parameters~critical
magnetization and critical field! were given in detail in Ref.
9. Asti and Bolzoni gave a unified view of FOMP’s i
uniaxial crystals, and provided a method for a highly acc
rate determination of the anisotropy constants at the temp
ture where the phenomenon is present. Further study of
transformation of the singularity from FOMP’s in the case
a polycrystalline uniaxial specimen revealed that for FOM
of typeP a discontinuity appears in the first derivative of th
magnetization with respect to the magnetic field and tha
FOMP of typeA gives rise to a discontinuity in the secon
derivative.10 These results lead to an extension of t
singular-point-detection theory, with the possibility of me
suring the critical field using polycrystalline specimens.

A FOMP can usually be observed only in a restricted te
perature range. Thus, another important parameter, the c
cal temperature, is frequently used to indicate the temp
©2002 The American Physical Society14-1
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tures for onset and disappearance of a FOMP. Up to no
systematic and complete study of the thermal behavior o
FOMP has been absent, mainly due to the complexity of
problem. The main difficulties for a theoretical study are h
to determine accurately the temperature dependence o
anisotropy constants, and how to understand the effec
temperature on the critical parameters of FOMP’s. It is n
essary to understand well how the trajectory undergone
the anisotropy constants in the parameter space varies
changing temperature. Recently, a very effective parame
method was successfully applied to the Callen-Shtrikm
theory of magnetic single-ion anisotropy by Millev an
Fähnle,11,12 and was shown to be applicable within th
frameworks of the mean-field~MF! approximation and the
random-phase approximation.12 This parametric method
makes it possible to calculate the exact thermal average
the Stevens operators13,14 for arbitrary temperature and fo
any value of the angular momentJ, without any confinemen
or assumption,15–17 and only needing to sweep the gener
ized effective field between zero and infinity.18–21 Conse-
quently, the temperature dependence of the single-ion an
ropy can be precisely calculated without recourse
iteration.18,19 In our previous work,22 the temperature depen
dence of the uniaxial magnetic anisotropy constants and
SRT in the single-ion one-sublattice system were intensiv
investigated by means of an effective parametric method
the present work, taking advantage of the parametric met
we thoroughly study the thermal evolution of a FOMP in t
single-ion one-sublattice system by tracing the evolution
the anisotropy flow induced by a temperature variation in
anisotropy space. This provides a clear insight into the
usual magnetization processes occurring in ferromagn
uniaxial crystals.

The remainder of the present paper is organized as
lows. The theoretical outline of the calculation method w
be described briefly in Sec. II. Section III is devoted to an
lyzing the thermal evolution of a FOMP in a single-ion on
sublattice system. As a starting point, in Sec. III A, we fi
deal with the simple case of a description of the anisotro
energy in terms of two anisotropy constants. The much m
complicated case of three anisotropy constants will be p
sented in Sec. III B. A summary is given in Sec. IV.

II. THEORETICAL OUTLINE

A one-sublattice system with uniaxial anisotropy in
external magnetic field can be described phenomenologic
by the free energy, involving the magnetocrystalline anis
ropy energy and the magnetostatic energy:

F5K1 sin2 u1K2 sin4 u1K3 sin6 u2HMs cos~u2w!, ~1!

whereK1 , K2, andK3 are the uniaxial anisotropy constant
The in-plane anisotropy is assumed to be negligible.u andw
are the angles of the magnetization vectorM and the applied
magnetic fieldH with respect to the symmetry axisc, respec-
tively. The magnetization processes always take place in
~c, H, M ! plane, since the in-plane contributions to anis
ropy are neglected in Eq.~1!. If the direction of the magnetic
field is fixed, the magnetization curve is determined by
10441
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stable moment configuration corresponding to the abso
minimum of the free energy. The absolute minimum of t
free energy can be found by minimizing Eq.~1! with respect
to the angleu, which involves the first and second parti
derivatives of the free energy with respect to the angleu:

]F

]u
5sin 2u~K112K2 sin2 u13K3 sin4 u!1HMs sin~u2w!

50, ~2!

]2F

]u2 52K124~K123K2!sin2 u22~8K2215K3!sin4 u

236K3 sin6 u1HMs cos~u2w!.0. ~3!

The solutions satisfying Eqs.~2! and ~3! correspond to the
local energy minima, among which the absolute minimum
chosen to determine the equilibrium state. If two absol
minima coexist, a discontinuous jump of the magnetization
expected to occur. By considering the condition of two c
existing minima, Asti and Bolzoni9 made a detailed study o
the magnetic phase diagrams of FOMP’s for two cases:
applied fieldH either parallel or perpendicular to thec axis
~type-A and type-P FOMP’s, respectively!. The borderlines
between the six types of FOMP’s~A1, A1C, A2, P1, P1C,
and P2! were analytically derived. The critical field an
magnetization were determined so that the type of FO
and the location and the amplitude of the jump can be p
dicted if one knows the values of the anisotropy constan

In order to determine the thermal evolution of a FOM
one needs to know the temperature dependence of the an
ropy constants. The theoretical framework of the parame
method for the temperature dependence of the anisotr
constants was described in detail in Ref. 22. Here we s
introduce this briefly for the convenience of the reader. In
single-ion one-sublattice system, the temperature dep
dence of the anisotropy constants can be determined thro
its relations to the theoretically more fundamental anisotro
coefficientsk̄n @see Eqs.~A1!–~A3! in Appendix ~A!#.1,22,23

The zero-temperature~ground-state! anisotropy constants ar
Ki

0[Ki(T50). The anisotropy coefficients are associat

with the thermal averages of the Stevens operators^Ôn
0& (T)

normalized to their zero-temperature values.11,22,24,25In the
case that the exchange interaction is dominant, i.e., if
crystal-field anisotropy terms are much smaller than
quantum-mechanical exchange, which is usually represe
by a Heisenberg-exchange term in the Hamiltonian which
responsible for the strong magnetic behavior of the system
interacting moments,24,26based on first-order thermodynam
perturbation theory the anisotropy coefficients turn out to
linear combinations of the momentsMn[^( Ĵz)

n& @see Eqs.
~A4!–~A6! in Appendix A#. Here Ĵz is the z component of
the angular momentum operator of a given ion;pn(J)
[^Ôn

0&(0) are certainJ-dependent products.14 All the mo-
mentsMn and, consequently, allk̄n’s, can be expressed vi
the first momentM1 or, equivalently, the reduced magne
zation m5M1 /J. The functional dependenceMn
5Mn(M1) itself proves to be model independent in a
renormalized quasi-independent collective-excitation th
4-2
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THERMAL EVOLUTION OF FIRST-ORDER . . . PHYSICAL REVIEW B 65 104414
ries. All the momentsMn can be easily derived from th
moment-generating functionV(a,x) by means ofnth-order
partial derivatives with respect toa @see Eq.~A7! in Appen-
dix A#. In the MF and dominant-exchange approximatio
neglecting the influence of an applied magnetic field on
magnetic order, one can derive a simple expression for
relation betweenx and t @t[T/Tc and Tc is the MF Curie
temperature; see Eq.~A8! in Appendix A#. Therefore, the
temperature dependence of the anisotropy coefficients
anisotropy constants for anyJ can be indirectly computed in
the whole ordering temperature range by using the gene
ized effective fieldx as a parameter.20,22 By means of this
effective parametric method, a general discussion and cla
fication of the temperature dependence of the uniaxial ani
ropy constants was exhaustively performed in Ref. 22 fo
single-ion one-sublattice system. Subsequently, all poss
SRT’s were detected by tracing the evolution of the anis
ropy flow in the anisotropy space including the phase d
grams for easy-magnetization directions~EMD’s!.

In the present contribution, the thermal evolution of
FOMP in a single-ion one-sublattice system will also be th
oughly investigated by tracing the evolution of the anis
ropy flow in the anisotropy space, but involving the pha
diagrams for the existence of the FOMP.

III. TYPES OF THERMAL EVOLUTION OF FOMP’S

The anisotropy coefficientsk̄n are the basis functions tha
describe the temperature dependence of the anisotropy
stants. The temperature dependence of the anisotropy co
cients is uniquely determined by a givenJ.12,20,22 For any
value of J, all three basis functions decrease strictly mon
tonically with increasing temperature.k̄2 is convex upward
in the whole temperature range, while bothk̄4 and k̄6 pos-
sess a typical bell shape and an inflection point.12,22 An ex-
ception to the convex-upward behavior ofk̄2 is its strictly
linear behavior in the classical limit ofJ→`. The higher the
order of the anisotropy coefficient, the faster it decrea
with increasing temperature. ProvidedJ is fixed, the tem-
perature dependence of the anisotropy constants is solel
termined by the set of zero-temperature anisotropy const
K1

0, K2
0, andK3

0 @see Eqs.~A1!–~A3! in Appendix A#. Since
a variation ofJ does not affect the general classification
the types of anisotropy constants,J53 is usually chosen in
the calculation procedure.19,22 This will make neither the
analysis nor its exposition longer. As long as the ze
temperature constants are known, the exact temperature
pendence of the anisotropy constants can be accurately
culated by the above-mentioned parametric method wi
the mean-field approximation. Subsequently,
temperature-driven anisotropy flow can be depicted thro
the trajectory followed by the anisotropy constants in anis
ropy space when the temperature is varied.20 If this trajectory
crosses the borderline separating different regions of st
magnetic phases, a magnetic phase transition is expect
the crossing point.22 If the phases have different EMD’s, a
SRT will take place. If the phases have different FOMP’s,
type of FOMP will change. In a one-sublattice system,
competition between different anisotropy constants is
10441
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sponsible for the occurrence of a SRT, while the competit
between the anisotropy energies and the magnetostatic
ergy is responsible for the occurrence of a FOMP. Howev
the thermal behavior of a FOMP in a one-sublattice system
attributed to the competition between the different anisotro
constants. Thus it would be possible to investigate the th
mal evolution of a FOMP in a one-sublattice system by o
serving the thermal behavior of the anisotropy consta
analogously to the way we have previously carried ou
systematic analysis of a SRT.22

A. Case of two anisotropy constants

If the highest-order zero-temperature anisotropy cons
is zero (K3

050), only two constants are required to descri
the uniaxial anisotropy. In this case, as shown in Eq.~A2! in
Appendix A,K2 has the same temperature dependence as
fourth-order anisotropy coefficient. Consequently,K2(t) de-
creases~or increases! strictly monotonically forK2

0.0 ~or
K2

0,0! with increasing temperature. As toK1 , both second-
and fourth-order basis functions enter into its expression
that three generic types of variation ofK1(t) exist, that de-
pend only on the ratiox05K2

0/K1
0 of the zero-temperature

anisotropy constants:~i! for x0. 3
8 , K1(t) has an extremum

that is a minimum or a maximum depending on the sign
K1

0; ~ii ! for 2 7
8 ,x0, 3

8 , K1(t) decreases~or increases!
strictly monotonically forK1

0.0 ~or K1
0,0!; and ~iii ! for

x0,2 7
8 , K1(t) has a zero point at a certain temperatu

between zero Kelvin and Curie temperatures.20 Since the
temperature dependence ofK1 and K2 is solely determined
by the zero-temperature conditions, i.e., the values ofK1

0 and
K2

0, these values are of crucial importance. If the pair ofK1
0

and K2
0 is given, the temperature flow of the anisotropy

fully determined within the MF approximation, and is val
for the whole class of nontrivial collective-excitatio
theories.24 Illustrative results are shown in Fig. 1 for all typ
cal initial conditions and theoretical trajectories are presen
for the anisotropy in the three generic regimes discus
above. As the anisotropy constantK2 evolves upon variation
of temperature without changing its sign, a trajectory start
in the upper (K2.0) or lower (K2,0) half-plane will stay
in its plane. If the anisotropy constantK1 has a zero point, a
flow starting in the right (K1.0) or left (K1,0) half-plane
will leave its plane~i.e., will cross the borderline of the two
half-planes! at the temperature whereK1 changes its sign. At
t51, all trajectories flow into the origin with a slope ap
proaching zero, because both single-ion anisotropy const
become zero at the Curie temperature andK2 decreases
faster thanK1 at high temperatures.24,27The thick solid lines
in Fig. 1 are the borderlines for the existence ofA1 andP1
FOMP’s. This picture is static in the sense that at a giv
temperature, say,T1 , K1(T1) andK2(T1) have definite val-
ues that determine a point in theK1-K2 plane, and variations
of the temperature and applied magnetic field do not aff
the location of the borderlines. After scrutinizing the anis
ropy trajectories in the case of two anisotropy constants
shown in Fig. 1, three kinds of crossovers exist between
trajectories and the borderlines. Accordingly, three types
thermal evolutions of the FOMP’s take place:~i! P1, ~ii !
4-3
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P1-A1, and ~iii ! A1. The crossovers are unique, and ta
place at a certain critical temperatureTcr corresponding to
the disappearance or a change of the type of FOMP.
existence and type of the crossovers are determined sole
the zero-temperature values ofK1

0 andK2
0. As shown in Fig.

2, at zero temperature, three hatched areasI, II , and III can
be distinguished in theK1

0-K2
0 plane, that correspond to th

three types of the crossovers. All three areas are in the lo
half-plane. That is,K2

0,0 is a prerequisite for the existenc
of a FOMP in the case of two anisotropy constants. The a
are defined as follows:

~ I ! the P1 area: 2 7
8 K1

0,K2
0,2 1

6 K1
0, K1

0.0,

~ II ! the P1-A1 area: 2K1
0,K2

0,2 7
8 K1

0, K1
0.0,

~ III ! the A1 area: 4K2
0,K1

0,2K2
0, K2

0,0.

The conditions listed above are for the existence of the th
types of the thermal behavior of the FOMP. The borderlin
for the disappearance of the FOMP’s of typeA1 andP1 are
K2

05 1
4 K1

0 and 2 1
6 K1

0, respectively. The crossover fromP1
to A1 is atK2

052K1
0. It is interesting to note that theP1-A1

area is the same as the axis~A! to plane~P! wedge in Fig. 3
of Ref. 20, which means that all systems in this area pos
both a SRT fromA to P, and a change of FOMP type from
P1 to A1.

As to the critical temperatureTcr of the FOMP, theK2 vs
K1 plots are only indicative. However, it is easy to determ

FIG. 1. Anisotropy flow diagram in the (K1-K2) plane. The
solid lines are the borderlines between theA1 and P1 types of
FOMP’s. The dashed straight lines represent the results of
analysis of the types of temperature dependence ofK1 within the
two-constant approximation. The representative initial conditio
(K1

02K2
0) can be read off the coordinates of the open circles. T

arrows indicate the direction of temperature evolution asT in-
creases from zero toTC .
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the critical temperature, if one plots the ratior(t)
5K1(t)/K2(t) as a function of the reduced temperaturet. In
Fig. 3, we presentr(t) for some representative cases f
which a crossover is detected. From the intersections ofr(t)
with the lines of crossoverrcross54, 21, and26, one is able
to determineTcr unambiguously for the corresponding cros
over. When the crossovers take place with increasing
temperature, the FOMP will disappear or its type w

e

s
e

FIG. 2. Phase diagram in the (K1
0-K2

0) plane for different kinds
of thermal behaviors of the FOMP’s:~I! P1, ~II ! P1-A1, ~III ! A1.

FIG. 3. Temperature dependence of the ratio of the first
second anisotropy constantsr(t)5K1(t)/K2(t). The solid horizon-
tal linesrcross54, 21, 26 are the borderlines between theA1 and
P1 types of FOMP’s in the representationr5r(t); crossing these
lines corresponds to disappearance or to type changes of
FOMP’s.
4-4
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change. Usually, one is interested in the critical field and
amplitude of a FOMP; thus it is meaningful to study t
thermal behavior of the critical field and the amplitude b
fore the jump disappears. As shown in Ref. 9, one ea
obtains an expression in terms ofx5K2 /K1 for the normal-
ized critical fieldhcr5Hcr /uHau ~whereHa is the anisotropy
field!, the normalized amplitudeDmcr5DM cr /Ms ~where
Ms is the saturation magnetization!, and the normalized criti-
cal magnetizationmcr5M cr /Ms ~whereM cr is the magneti-
zation at the initial state of the FOMP!. For a P1 type of
FOMP, one obtains, usingHa52K1 /Ms ,

mcr5
A2223/x21

3
, ~4!

Dmcr512mcr , ~5!

hcr5mcr~112xmcr
2 !. ~6!

For anA1 type of FOMP withHa5@22(K112K2)#/Ms ,
one obtain

mcr5
A413/x21

3
, ~7!

Dmcr512mcr , ~8!

hcr5Umcr@112x~12mcr
2 !#

112x
U. ~9!

The temperature dependence of the normalized ampli
and the critical field are shown in Fig. 4 for three typic
cases, corresponding to three kinds of thermal evolution
the FOMP. In the cases ofP1 andA1, the normalized am-
plitude decreases to zero if the temperature increases
zero to the critical temperature, whereas the normalized c
cal field increases to a maximum. In the case ofP1-A1, the

FIG. 4. Temperature variation of the angle of the EMD w
respect to thec axis, normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of the FOMP’s~open circles! in
some typical systems. The initial ratios between the first and sec
anisotropy constants used in the calculation are~I! 22.5, ~II ! 1.1,
and ~III ! 2.0.
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first critical temperatureTcr1 is equal to the axis-to-plane
SRT temperatureTs . This shows that the change of the typ
of FOMP is due to the change of the EMD from axis to pla
~see the angle of the EMD with respect to thec axis! at the
first critical temperature. BelowTcr1, the normalized ampli-
tude increases to unity and the normalized critical field
creases to zero with increasing temperature. Then the
malized amplitude decreases to zero, and the normal
critical field increases to a maximum, as the temperature
creases fromTcr1 to Tcr2. AboveTcr2, no FOMP is observed
and the EMD remains in the plane. Therefore, in the case
two anisotropy constants, one-sublattice systems with z
temperature anisotropy constants in areaII are rich of mag-
netic phenomena, like a first-order axis-to-planeAP SRT, a
P1 type of FOMP at low temperatures (T,Tcr1) and anA1
type of FOMP at high temperatures (Tcr1,T,Tcr2).

B. Case of three anisotropy constants

If the zero-temperature highest-order anisotropy cons
is nonzero (K3

0Þ0), three constants are needed to descr
the uniaxial anisotropy. In this case, the third anisotropy c
stant has the same temperature dependence as the sixth
anisotropy coefficient. Just likeK1 in the case of two anisot
ropy constants, in the case of three anisotropy constantsK2

possesses three generic types of thermal behavior depen
on the ratio of the intrinsic constantsr 5K3

0/K2
0, because the

fourth- and sixth-order basis functions enter into the expr
sion for the temperature dependence. Ifr . 5

9 , K2(t) has an
extreme value. For2 11

18 ,r , 5
9 , K2(t) is a strictly monotonic

function. If r ,2 11
18 , K2(t) becomes zero at som

temperature.22 In the three-constant case, the temperature
pendence ofK1 becomes very complicated due to the thr
basis functions and two independent variablesx05K2

0/K1
0

andy05K3
0/K1

0 involved in Eq.~A1!. As a result of all pos-
sible combinations betweenx0 andy0 , seven types of tem-
perature dependence ofK1(t) may be observed. A detaile
phase diagram for these different temperature dependen
in the parameter space (x0-y0) was presented in Fig. 4 o
Ref. 22. The most interesting feature is that, in the case
the seventh type,K1(t) may exhibit two zero points, i.e., i
changes sign twice for realistic values of the initial para
eters. This results in a trajectory that is cut into three pa
distributed over the two parameter spaces~x-y! with K1(t)
.0 andK1(t),0,21 that are needed for a complete descr
tion of the anisotropy in the case of three constants.9 Here
x5K2 /K1 and y5K3 /K1 . When K1(t) goes to zero, the
trajectory comprising the points@x(t),y(t)# will go to infin-
ity in the chosen parameter space and, after the chang
sign ofK1(t), re-emerge in another section of the parame
space. IfK1(t) has only one zero point, its trajectory wi
consist of two parts. IfK1(t) has no zero point, it will not
leave the parameter space determined by the sign ofK1

0.
Generally speaking, the trajectory@x(t),y(t)# starts from the
initial point (x0 ,y0), and finally ends in the origin, at th
Curie temperature, except for some special cases.22

nd
4-5



a
to

ed

ne

of
-
e
a

m
a

l
l
n

he

py

s

e
C.

e
al-

the

o

es
-

-

th

th

YU, ZHANG, de BOER, BRU¨ CK, AND BUSCHOW PHYSICAL REVIEW B65 104414
1. K1
0Ì0

In the case ofK1
0.0, 12 types of thermal behavior of

FOMP are found after detailed investigation of the trajec
ries for all possible initial points (x0 ,y0): ~1! A1, ~2!
A1C-A1, ~3! A1C, ~4! A1C-P2, ~5! P2, ~6! P2-A1C-P2,
~7! P2-A1C, ~8! P2-A1C-A1, ~9! P2-P1-A1, ~10! P1-A1,
~11! P2-P1, and~12! P1. The phase diagram is summariz
in Fig. 5, where linesl, m, andn and curvesq, o, andr are
the borderlines between four types of FOMP’sA1, A1C, P1,
andP2 at zero temperature. The equations of the borderli
in Fig. 5 are listed in Appendix B. Lineb starts at point
s(29/4,11/8), which is a common intersection point
curvesc, e, g, f, andh. At point s, all three anisotropy con
stants possess the same temperature dependence as th
anisotropy coefficient, so that the trajectory will always be
this point with varying temperature. Points is the crossing
point for four types of thermal behavior ofK1 , which makes
it an important point in the phase diagram.22 Twelve typical
initial points are chosen to represent the 12 types of ther
behavior of the FOMP. Each initial point is symbolized by
letter betweena and l, where a corresponds to the initia
point in region 1,b to that in region 2, etc. For all initia
points, the thermal variation of the normalized amplitude a
critical field of the FOMP, and the normalized angle of t
EMD with respect to thec axis ~if an SRT exists! are dis-

FIG. 5. Phase diagram for different kinds of thermal behavior
the FOMP’s in the initial parameter space (x0-y0) with K1

0.0: ~1!
A1, ~2! A1C-A1, ~3! A1C, ~4! A1C-P2, ~5! P2, ~6!
P2-A1C-P2, ~7! P2-A1C, ~8! P2-A1C-A1, ~9! P2-P1-A1,
~10! P1-A1, ~11! P2-P1, and~12! P1. The curvesq, o andr and
the straight linesl, m, andn are the borderlines between four typ
of FOMP’s:A1, A1C, P1, andP2 at zero temperature. The configu
rations of different regions around pointw are schematically repre
sented in the inset.
10441
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played in Figs. 6–9. Furthermore, the relevant anisotro
flows are drawn all together in thex-y planes in Fig. 10 and
labeled with the same letters. In Fig. 10, the dotted curveo,
o8, p, q, q8, r, and r 8 and the dotted linesl, m, n, andn8
denote the borderlines between the six types of FOMP’s:A1,
A1C, A2, P1, P1C, and P2, at arbitrary temperature. Th
equations of borderlines in Fig. 10 are listed in Appendix

A1. Region 1 in Fig. 5, below the linesl and m, is the
largest one. Only anA1 type of FOMP is observed in th
systems, with initial points inside this regime. The norm
ized critical parametersmcr , Dmcr , andhcr for anA1 type of
FOMP in the three-constant case can be determined with
definition ofHa5@22(K112K213K3)#/Ms ,9 by means of
the following equations:

f

FIG. 6. Temperature variation of the angle of the EMD wi
respect to thec axis, normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of the FOMP’s~open circles! in
some typical systems in the case ofK1

0.0. The initial parameters
used in the calculation are~a! ~23.0,22.0!, ~b! ~23.0,1.75!, and~c!
~24.0,3.5!.

FIG. 7. Temperature variation of the angle of the EMD wi
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0.0. The initial parameters
used during the calculation are~d! ~24.0,3.75!, ~e! ~23.8,4.0!, and
~f ! ~23.0,2.262!.
4-6
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5ymcr
4 14ymcr

3 23~x12y!mcr
2 22~x12y!mcr1x1y1150,

~10!

Dmcr512mcr , ~11!

hcr5Umcr@112x~12mcr
2 !13y~12mcr

2 !2#

112x13y
U. ~12!

Figure 6~a! shows the temperature dependence of the n
malized amplitude and critical field of anA1 type of FOMP
below its critical temperature for one typical initial point
this region. Its anisotropy flowa in Fig. 10 contains two
parts~a1 anda2! due to the one zero point ofK1 . Below the
critical temperature, the normalized amplitude decrease

FIG. 8. Temperature variation of the angle of the EMD w
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0.0. The initial parameters
used during the calculation are~g! ~22.7,1.85!, ~h! ~22.3,1.35!, and
~i! ~21.9,1.0!.

FIG. 9. Temperature variation of the angle of the EMD w
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0.0. The initial parameters
used during the calculation are~j! ~21.7,0.8!, ~k! ~21.75,0.9!, and
~l! ~5.0,22.5!.
10441
r-

to

zero, and the normalized critical field increases to a ma
mum with increasing temperature. Even if there is a z
point for K1 below Tcr , no anomaly occurs in the tempera
ture dependence ofDmcr andhcr . The disappearance of th
A1 type of FOMP is due to the crossing of the second p
(a2) of the anisotropy flow with the borderlinen8 in the
parameter space withK1,0. At the borderlinen8, the nor-
malized critical amplitude of the jump in theA1 type and
A1C type of FOMP’s is zero.

A1C-A1. Region 2 is below curvese and o and above
line l in Fig. 5. The systems with initial points inside th
area exhibit a continuous cone-to-plane~CP! SRT and two
types of FOMP’s~an A1C type at low temperature and a

FIG. 10. Anisotropy flows in the plane~x-y! for these typical
thermal behaviors of the FOMP’s shown in Figs. 6–9 and 12–
Dotted linesl, m, n, andn8 and dotted curveso, o8, p, q, q8, r, and
r 8 are the borderlines among the six types of FOMP’s:A1, A1C,
A2, P1, P1C, and P2 at arbitrary temperature. The upper pla
corresponds toK1.0, and the lower one toK1,0. The arrows
indicate the direction of temperature evolution asT increases from
zero toTc .
4-7
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A1 type at high temperature!. Equations~10!–~12! are also
applicable to theA1C type of FOMP. As shown in Fig. 6~b!,
it is clear that the first critical temperature is equal to t
temperatureTs of the ~CP! SRT. No anomaly is observed i
the temperature dependence ofDmcr when the type of FOMP
changes fromA1C to A1. However,hcr has a sharp peak a
the first critical temperature. Tracing down the anisotro
flow b1-b2 in Fig. 10, one finds that its crossing with bo
derlinel is responsible for the~CP! SRT and the FOMP-type
variation fromA1C to A1. The second critical temperatur
corresponds to the crossing with the borderlinen8. At the
borderlinel, hcr becomes infinitely large, which is the reaso
why a sharp peak exists in the thermal curve ofhcr at the first
critical temperature. Curvee in Fig. 5 is numerically deter-
mined by collecting the initial points whose trajectories pa
through the common crossing point~1

4, 21
2! of borderlinesl

and n8 in Fig. 10. If one takes Zener’s power law15 to ap-
proximate the temperature dependence of the basis func
k̄n , the equation satisfied by curvee can be deduced@see Eq.
~B12! in Appendix B#. When the phase transition takes pla
at low temperature, Zener’s power law will be an easy a
effective way to analyze the thermal behavior of the anis
ropy.

A1C. In region 3 in Fig. 5, below curvesc and o and
above curvee, the systems possess only anA1C type of
FOMP. Curvec is the boundary between the types 4 and 7
temperature dependence ofK1(t).22 Line b separates region
3 into two subregions. In the region below lineb, K1(t) has
one zero point and a continuous cone-to-plane~CP! SRT can
be observed~this case is not illustrated in Fig. 6!. In the
region above lineb, K1(t) has two zero points and a con
tinuous cone-to-axis~CA! SRT exists@see Fig. 6~c!#. Below
the SRT temperature for~CP! or ~CA!, the A1C FOMP ar-
rives at its critical temperatureTcr when the anisotropy flow
crosses the borderlinen8 ~see the anisotropy flowc1-c2-c3
in Fig. 10!. Above the critical temperature, if the anisotrop
flow crosses directly the borderlinel, ~CP! SRT takes place
If K1(t) changes its sign twice,~CA! SRT occurs at the sec
ond zero point ofK1(t). In the temperature dependence
hcr in Fig. 6~c!, there is an extremum below the critical tem
peratureTcr , which is due to the large curvature of its a
isotropy flow before crossing the borderlinen8. When the
initial point is just on the lineb, no SRT can be observe
because the anisotropy flow does not approach the origin
the point~27

8, 0! in the parameter space withK1,0.
A1C-P2. Region 4 is above curvec and below curveo. If

the anisotropy flow originates from this region@see Fig. 7~d!,
and the anisotropy flowd in Fig. 10#, it first crosses the
borderlineo, which leads to a discontinuous cone-to-axisCA
SRT and simultaneously to a type variation of the FOM
from A1C to P2. The critical temperatureTcr2 for the FOMP
of type P2 is reached if borderlineq is crossed. The normal
ized critical parametersDmcr andhcr for a P2 type of FOMP
in the three-constant case can be determined by the follow
equations with the definitionHa52K1/Ms ~see Ref. 9!,

Dmcr5F25x2~60y211x2!1/2

6y G1/2

, ~13!
10441
y

s

ns
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f

f

ut

g

hcr5
A

5 F22
17x21x~60y211x2!1/2

30y G , ~14!

with

A5F ~60y211x2!1/2

10y
23xG1/2

.

At Tcr1, Dmcr is discontinuous andhcr becomes zero when
the type of FOMP changes fromA1C to P2. Then,Dmcr

decreases whilehcr increases, until a FOMP ofP2 type dis-
appears atTcr2.

P2. Region 5 in Fig. 5 is below curveq and above curves
o, h, and f. The systems with the initial points inside th
region exhibit only aP2 type of FOMP. From the anisotrop
flow e in Fig. 10, the disappearance of theP2 type of FOMP
is due to the crossing of the anisotropy flow with the bord
line q. In Fig. 7~e! it is seen thatDmcr decreases to zero an
hcr increases to a maximum value when the temperature
creases toTcr . Curvef in Fig. 5 is determined from the initia
points whose anisotropy flows pass through the comm
crossing pointz ~21

3,
1
15! of borderlinesq andn. Within the

framework of Zener’s power law, one can obtain its equat
@see Eq.~B13! in Appendix B#. Curve h consists of initial
points whose anisotropy flows are tangent with the bord
line o.

P2-A1C-P2. Region 6 is enclosed by curveso, c, andh.
In systems with initial points inside this region, discontin
ous axis-to-cone and discontinuous cone-to-axisACA SRT
and FOMP-type changesP2-A1C-P2 @see Fig. 7~f!# take
place. AP2-type FOMP can occur when the EMD is an ea
axis, both at low temperatures and at high temperatures.
anisotropy flowf shown in Fig. 10 demonstrates that the tw
crossings with borderlineo are responsible for theACASRT
and theP2-A1C-P2 type change of the FOMP. The cros
ing with borderlineq corresponds to the third critical tem
peratureTcr3 at which Dmcr of the P2 type of FOMP be-
comes zero. In Fig. 7~f! it is seen that Dmcr jumps
discontinuously atTcr1 (5Ts1) and atTcr2 (5Ts2).

P2-A1C. Region 7 is enclosed by curvesc, o, ande. Line
b separates this region into two subregions. In the reg
below lineb, a discontinuous axis-to-cone and a continuo
cone-to-planeA(CP) SRT can be observed, while in th
region above lineb, a discontinuous axis-to-cone and a co
tinuous cone-to-axisA(CA) SRT exist@see Fig. 8~g!#. When
the initial point is just on lineb, only a discontinuous axis
to-coneAC SRT is realized. The discontinuous SRT fro
axis to cone is related to the crossing of the anisotropy fl
with borderlineo ~see the anisotropy flowg1-g2-g3 in Fig.
10!. At the same time, the type of FOMP changes fromP2 to
A1C at Tcr1. Subsequently, when the anisotropy flo
crosses the borderlinen8, the A1C type of FOMP will dis-
appear atTcr2. AboveTcr2, if the anisotropy flow crosses th
borderline l, the continuous cone-to-plane SRT will tak
4-8
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place; if K1(t) has its second zero point, the continuo
cone-to-axis SRT occurs@see Fig. 8~g!#; if the anisotropy
flow approaches the point~27

8,0!, no other SRT is observed
The last case corresponds to the initial points on lineb.

P2-A1C-A1. Region 8 is enclosed by the curvese, o, and
g. Discontinuous axis-to-cone and continuous cone-to-pl
A(CP) SRT and FOMP-type changesP2-A1C-A1 can be
observed in systems with initial points inside this region@see
Fig. 8~h!#. The anisotropy flowh1-h2 shown in Fig. 10 in-
dicates that the discontinuous axis-to-cone SRT and the
variation of the FOMP fromP2 to A1C are related to the
crossing with borderlineo, and the subsequent continuo
cone-to-plane SRT and theA1C-to A1-type variation of the
FOMP to the crossing with borderlinel. The disappearanc
of theA1-type FOMP is due to the crossing of the anisotro
flow with borderlinen8 at the third critical temperatureTcr3.
Curve g in Fig. 5 has been numerically determined by c
lecting initial points whose anisotropy flows will pas
through the pointt(22,1) which is the common crossin
point of borderlinesl andm. Equation~B14! in Appendix B
describes curveg on the basis of Zener’s power law. A
shown in Fig. 8~h!, Dmcr is discontinuous atTcr15Ts1 , but
continuous atTcr25Ts2 . hcr shows an anomaly atTcr2.

P2-P1-A1. Region 9 is enclosed by lineb and curvesr
andg. Systems with initial points inside this region exhibit
discontinuous axis-to-planeAP SRT and the FOMP-type
changesP2-P1-A1 @see Fig. 8~i!#. The normalized critical
parametersmcr , Dmcr , andhcr for a P1 type of FOMP in the
three-constant case can be determined by the following e
tions, usingHa52K1 /Ms ~Ref. 9!:

5ymcr
4 14ymcr

3 13~x1y!mcr
2 12~x1y!mcr1x1y1150,

~15!

Dmcr512mcr , ~16!

hcr5umcr~112xmcr
2 13ymcr

4 !u. ~17!

As shown in Fig. 8~i!, the first critical temperatureTcr1 cor-
responding to the disappearance of aP2 type of FOMP and
the successive onset of aP1 type of FOMP can only be
distinguished from the kink in the temperature depende
of Dmcr . No anomaly is observed atTcr1 in the thermal
curve of hcr . From the anisotropy flowi1-i2 displayed in
Fig. 10, one sees that the type change of the FOMP fromP2
to P1 is due to the crossing of the anisotropy flow wi
borderline r. Subsequently, its crossing with borderlinem
leads to theAP SRT and the type variation of FOMP from
P1 to A1 atTcr25Ts . At the borderlinem, Dmcr is equal to
1 andhcr becomes zero. AnA1-type FOMP can persist up t
the third critical temperatureTcr3 when the anisotropy flow
crosses borderlinen8. Above Tcr2, Dmcr , (hcr) decreases
~increases! monotonically with increasing temperatu
until Tcr3.

P1-A1. Region 10 is below curver and lineb, and above
line m. A discontinuous axis-to-planeAP SRT and a change
of the FOMP from typeP1 to A1 can be found in the sys
tems with initial points inside this region@see Fig. 9~j!#. The
anisotropy flowj 1- j 2 shown in Fig. 10 reveals that its cros
10441
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ing with borderlinem causes the SRT and the type change
the FOMP atTcr1. The FOMP of typeA1 disappears atTcr2
when the anisotropy flow crosses borderlinen8. An anomaly
can be observed in both the temperature dependence ofDmcr
and that ofhcr at Tcr1.

P2-P1. Region 11 in Fig. 5 is enclosed by lineb and
curvesr andf. As shown in Fig. 9~k!, in the whole tempera-
ture range of magnetic order no SRT and only change of
type of FOMP fromP2 to P1 take place. The anisotrop
flow k shown in Fig. 10 indicates that the type change of
FOMP must be attributed to the crossing with borderliner.
The subsequent crossing with borderlinen determines the
critical temperatureTcr2 for the disappearance of aP1 type
of FOMP. At borderlinen, Dmcr of a P1-type FOMP be-
comes zero. From 0 K to Tcr2, hcr continuously increases to
a maximum value. A kink emerges in the temperature dep
dence ofDmcr at Tcr1. If the initial point is on lineb, a P1
type of FOMP can persist up to the Curie temperature,
cause the anisotropy flow approaches the point~27

8,0! and
does not cross the borderlinen.

P1. Region 12 in Fig. 5 is below curver and linen and
above lineb. Systems with initial points inside this regio
exhibit only aP1 type of FOMP, and no SRT@see Fig. 9~l!#.
When the anisotropy flowl in Fig. 10 crosses borderlinen,
the amplitude of theP1 type FOMP becomes zero. When th
initial point is on lineb, a P1 type of FOMP can be observe
in the whole temperature range of magnetic ordering, as
anisotropy flow never crosses borderlinen.

In the remaining region above curveq and line n, no
FOMP and SRT can be detected at any temperature bec
the anisotropy flow originating from this region does n
cross any borderline for the EMD or the existence of
FOMP in the parameter space~x-y!. The thermal behaviors o
FOMP’s and SRT’s in systems with initial points inside ea
region in Fig. 5 are summarized in Table 1.

2. K1
0Ë0

If the sign ofK1
0 is changed, the competition between t

anisotropy constants will be varied. Consequently, the ph
diagram for the existence of a FOMP is modified. Therefo
different types of thermal behavior of FOMP’s and differe
conditions of their existence are expected in the initial pla
x0-y0 . The phase diagram of the conditions of their ex
tence is shown in detail in Fig. 11, where the linesl, n, and
n8 and the curveso8, q8, andr 8 are the borderlines betwee
four types of FOMP’s:A1, A1C, A2, andP1C at zero tem-
perature. The equations of some borderlines in Fig. 11
listed in Appendix B. Line b starts from the point
s(2 9

4 , 11
8 ), a common crossing point of the numerically d

termined curvesc, c8, j, andg8. Fourteen types of therma
behavior of FOMP’s@~1! A1, ~2! A1C-A1, ~3! A1C, ~4!
A2-A1, ~5! A2, ~6! P1C-A2, ~7! P1C, ~8! P1C-P1, ~9!
A2-P1C-P1, ~10! A2-P1, ~11! P1C-A2-P1, ~12!
A2-A1-P1-A1, ~13! P1C-A2-A1-P1-A1, and ~14!
P1C-A2-A1# are found after a systematic investigation
the anisotropy flow of any initial point (x0 , y0) in the initial
parameter space withK1

0,0. For each type of thermal be
havior of the FOMP, one representative initial point is s
4-9
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TABLE I. Summary of thermal behavior of FOMP’s and SRT’s observed in a single-ion one-subl
system with initial point inside each region in Fig. 5~the case ofK1

0.0!. The asterisk points to the remainin
region outside the 12 nominated regions. The arrows indicate the direction of increasing temperature,
letter above the arrow denotes the borderline where the transition takes place. The letter between par
in the FOMP column is the borderline where the FOMP disappears. The parentheses in the SRT
indicate that the transition is of second order.

No. FOMP SRT

1 A1(n8) /

2 A1C ——→
l

A1(n8) (C ——→
l

P)

3 A1C(n8) (C ——→
l

P),/,(C ——→
K150

A)

4 A1C ——→
o

P2(q) C ——→
o

A
5 P2(q) /

6 P2 ——→
o

A1C ——→
o

P2(q) A ——→
o

C ——→
o

A

7 P2 ——→
o

A1C(n8)
A ——→

o
(C ——→ P

l
), A ——→

o

C,

A ——→
o

(C ——→
K150

A)

8 P2 ——→
o

A1C ——→
l

A1(n8) A ——→
o

(C ——→
l

P)

9 P2 ——→
r

P1 ——→
m

A1(n8) A ——→
m

P

10 P1 ——→
m

A1(n8) A ——→
m

P

11 P2 ——→
r

P1(n) /
12 P1(n),P1 /
* / /
m
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an
ni-
lected to show the thermal variation of the normalized a
plitude and critical field of the FOMP, and the normaliz
angle of the EMD with respect to thec axis ~if an SRT
exists! in Figs. 12–16. Some relevant anisotropy flows m
be found in Fig. 10 by looking for the same notation.

A1. The largest region in Fig. 11, region 1, is locat
above curver 8 and line l. No SRT and only anA1 type of
FOMP can be observed in systems with initial points ins
this region@Fig. 12 ~m!#. The critical temperatureTcr for the
A1 type of FOMP is reached when the anisotropy flowm in
the bottom part of Fig. 10 crosses the borderlinen8. Dmcr
decreases, whereashcr increases with increasing temperatu

A1C-A1. Region 2 in Fig. 11 is below linel, and above
curvee. Systems with initial points inside this region exhib
a continuous cone-to-plane~CP! SRT and a FOMP type
changes fromA1C to A1 @Fig. 12~n!#. The crossing of tra-
jectory n in Fig. 10 with the borderlinel corresponds to this
SRT and the change in the type of FOMP. The crossing w
borderline n8 corresponds to the disappearance of
A1-type FOMP atTcr2. A sharp peak in the thermal curve o
hcr occurs at the first critical temperature atTcr1 (5Ts).
Curve e is numerically determined by collecting the initia
points whose trajectories flow through the crossing point
the borderlinesl andn8. Equation~B12! in Appendix B de-
scribes curvee within Zener’s power law.

A1C. Region 3 in Fig. 11 is below the curvee. Like
region 3 in the case ofK1

0.0, lineb also cuts this region into
two subregions. In the region below lineb, K1(t) has one
zero point and a continuous cone-to-axis~CA! SRT can be
10441
-
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e

.

h
e

f

observed, while, in the region above lineb, K1(t) has no
zero point and a continuous cone-to-plane~CP! SRT exists
@Fig. 12~o!#. If the initial point is just on lineb, no SRT is
observed during the whole temperature range of magn
order. Below the SRT temperatureTs for ~CP! or ~CA!, the
A1C type of FOMP reaches its critical temperatureTcr when
the anisotropy flowo in Fig. 10 crosses the borderlinen8.
Above the critical temperatureTcr for an A1C type of
FOMP, if the anisotropy flow crosses borderlinel, ~CP! SRT
occurs; ifK1(t) changes its sign,~CA! SRT takes place at the
zero point ofK1(t).

A2-A1. Region 4 in Fig. 11 is below curver 8 and above
the curvesc8, o8, and i. Systems with initial points inside
this region exhibit a change of FOMP fromA2 type toA1
type, but no SRT. The normalized critical parametersDmcr
andhcr for anA2-type FOMP in the three-constants case c
be determined by the following equations using the defi
tion of Ha5@22(K112K213K3)#/Ms ~Ref. 9!:

Dmcr5F5~x13y!2G

6y G1/2

, ~18!

with

G5~60y211x2181y2154xy!1/2,

and

hcr5
A8

5 F22
~x13y!$17~x13y!2G%

30y~112x13y! G , ~19!

with
4-10
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A85F3~x13y!1G

10y G1/2

.

FIG. 11. Phase diagram for different kinds of thermal behav
of the FOMP’s in the initial parameter space (x0-y0) with K1

0,0:
~1! A1, ~2! A1C-A1, ~3! A1C, ~4! A2-A1, ~5! A2, ~6! P1C-A2,
~7! P1C, ~8! P1C-P1, ~9! A2-P1C-P1, ~10! A2-P1, ~11!
P1C-A2-P1, ~12! A2-A1-P1-A1, ~13! P1C-A2-A1-P1-A1,
and ~14! P1C-A2-A1. The curvesr 8, o8, andq8 and the straight
lines l, n, andn8 are the borderlines between four types of FOMP
A1, A1C, A2, andP1C at zero temperature. The configurations
the different regions around pointu8 are schematically represente
in the inset.

FIG. 12. Temperature variation of the angle of the EMD w
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0,0. The initial parameters
used during the calculation are~m! ~6.0,7.0!, ~n! ~7.0,25.3!, and~o!
~5.0,25.5!.
10441
As shown in Fig. 13~p!, the first critical temperatureTcr1, at
which the change takes place fromA2 to A1 types of FOMP,
can be seen as a kink in the temperature dependenc
Dmcr . However, no anomaly occurs in the temperature d
pendence ofhcr at Tcr1. The trajectoryp in Fig. 10 suggests
that its crossings with borderlinesr 8 andn8 correspond with
the change of the FOMP fromA2 to A1 type, and with the
disappearance of an A1-type FOMP, respectively. Curvei has
been numerically determined by collecting the initial poin
whose anisotropy flows pass through the crossing po
z8~1

4,
1
8! of the borderlinesr 8 and n8. Curve i crosses with

curveso8 andc at pointv. With Zener’s power law, one can
derive Eq.~B16! in Appendix B, that describes curvei.

A2. Region 5 in Fig. 11 is below the curvei and above the

r

:

FIG. 13. Temperature variation of the angle of the EMD wi
respect to thec axis normalized top/2 ~open square!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0,0. The initial parameters
used during the calculation are~p! ~23.8,3.8!, ~q! ~22.0,1.5!, and
~r! ~2.2,1.33!.

FIG. 14. Temperature variation of the angle of the EMD wi
respect to thec axis normalized top/2 ~open square!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0,0. The initial parameters
used during the calculation are~s! ~22.6,1.1!, ~t! ~24.0,2.5!, and
~u! ~24.0,3.08!.
4-11
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curveso8 andq8. No SRT and only anA2 type of FOMP is
observed in systems with initial points inside this region.
Fig. 13~q! it can be seen thatDmcr of the FOMP becomes
zero whilehcr reaches a maximum at the critical temperatu
Tcr . This happens when the trajectoryq in Fig. 10 crosses
the borderlineq8.

P1C-A2. Region 6 is enclosed by curvesc, o8, andg8. A
discontinuous cone-to-planeCP SRT and a change of FOMP
from P1C to A2 type can be observed in the systems w

FIG. 15. Temperature variation of the angle of the EMD wi
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0,0. The initial parameters
used during the calculation are~v! ~23.0,2.125!, ~w!
~22.35,1.475!, and~x! ~25.0,4.16!.

FIG. 16. Temperature variation of the angle of the EMD wi
respect to thec axis normalized top/2 ~open squares!, the normal-
ized amplitude, and the critical field of FOMP’s~open circles! in
some typical systems in the case ofK1

0,0. The initial parameters
used during the calculation are~y! ~22.4,1.5253! and ~z!
~22.3,1.4253!.
10441
e

initial points inside this region@Fig. 13~r!#. When trajectoryr
in Fig. 10 crosses borderlineo8, the SRT and the type
change of the FOMP take place atTcr15Ts . Crossing with
borderline q8 leads to the disappearance of anA2-type
FOMP at Tcr2. Curve c is the same as that in Fig. 5, an
curveg8 has numerically been determined by collecting t
initial points whose anisotropy flows pass the crossing po

t8(21,1
3 ) of borderlineso8, q8, and n. Equation~B15! in

Appendix B describes curveg8 within Zener’s power law.
Dmcr shows a discontinuous jump atTcr1.

P1C. Only a P1C-type FOMP exists in systems with a
initial point inside region 7 which is below curvesj andg8
and above linen. Line b separates this region into two sub
regions. In the region below lineb, a continuous cone-to-axi
~CA! SRT can be observed@Fig. 14~s!#, while in the region
above lineb, a continuous cone-to-plane~CP! SRT exists. If
the initial point is just on lineb, no SRT occurs. Below the
SRT temperature for~CP! and~CA! SRT’s, when the anisot-
ropy flow s1-s2 in Fig. 10 crosses borderlinen, the
P1C-type FOMP reaches its critical temperatureTcr . Above
the critical temperatureTcr , if the anisotropy flow crosses
borderlinel, ~CP! SRT occurs; ifK1(t) changes its sign like
the anisotropy flows in Fig. 10,~CA! SRT takes place at the
zero point ofK1(t). Curve j has been numerically deter
mined by collecting the initial points whose critical temper
tureTcr of theP1C-type FOMP is just equal to the transitio
temperatureTs of the ~CA! SRT.

P1C-P1. Region 8 is above curvej and below lineb and
curveo8. A continuous cone-to-axis~CA! SRT and a change
of the FOMP fromP1C to P1 type exist in systems with
initial points inside this region@Fig. 14~t!#. The trajectory
t1-t2 in Fig. 10 shows that the SRT and the type change
the FOMP take place at the zero point ofK1(t), and that the
crossing with borderlinen in the parameter space withK1
.0 corresponds with the disappearance of aP1-type FOMP.
A sharp peak clearly emerges in the temperature depend
of hcr at Tcr1 (5Ts), sincehcr determined by Eq.~17! tends
to infinity at the zero point ofK1(t). No anomaly occurs in
the temperature dependence ofDmcr when the type of FOMP
changes fromP1C to P1.

A2-P1C-P1. Region 9 is above curveo8 and below line
b. A discontinuous plane-to-cone and a continuous cone
axis P(CA) SRT and FOMP-type changesA2-P1C-P1 can
be found in the systems with initial points inside this regi
@Fig. 14~u!#. From the trajectoryu1-u2 in Fig. 10, one
knows that the discontinuous plane-to-cone SRT and the
variation of FOMP fromA2 to P1C are due to the crossing
with borderlineo8. A discontinuous jump ofDmcr occurs at
Tcr1 (5Ts1) together with the type variation of the FOM
from A2 to P1C. The ensuing continuous cone-to-axis SR
and the type change of the FOMP fromP1C to P1 have the
same origin as discussed above in region 8.

A2-P1, P1C-A2-P1. Both regions 10 and 11 in Fig. 1
are on lineb that starts from points and crosses curveo8 at
point u8. The part of lineb above pointu8 belongs to region
10, while the part between pointsu8 ands belongs to region
11. When the initial point is on lineb above points, K1(t)
has one zero point; thus its anisotropy flow consists of t
4-12
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parts. The first one is along lineb from the initial point to
infinity, and the second one is along lineb from infinity in
the third quadrant to the point~27

8,0! in the parameter spac
with K1.0. Therefore, when the initial point is in region 1
the system is expected to have a discontinuous plane-to
SRT, and a type change of the FOMP fromA2 to P1 @Fig.
15~v!# occurs at the zero point ofK1(t). If the initial point is
in region 11, a discontinuous cone-to-plane SRT and t
change of FOMP fromP1C to A2 will take place @Fig.
15~w!# before the zero point ofK1(t) when the anisotropy
flow crosses the borderlineo8. In both cases, aP1-type
FOMP may persist up to the Curie temperature.

A2-A1-P1-A1. Region 12 is above lineb and curveo8
and below curvec8. A discontinuous plane-to-axis and
discontinuous axis-to-planePAPSRT and a change of type o
FOMPA2-A1-P1-A1 can be observed in systems with in
tial points inside this region@Fig. 15~x!#. One finds from the
trajectory x1-x2-x3 in Fig. 10 thatK1(t) has two zero
points. When trajectoryx1 crosses borderliner 8, the type of
FOMP changes fromA2 to A1. Then, after the first zero
point of K1(t), when trajectoryx2 crosses borderlinem
twice, the PAP SRT and the type change of the FOM
A1-P1-A1 take place before the second zero point ofK1(t).
The curvec8 has been numerically determined by collecti
the initial points whose anisotropy flows are tangent to
borderlinem in the parameter space withK1.0.

P1C-A2-A1-P1-A1. Region 13 in Fig. 11 is enclosed b
line b and the curveso8 andc8. With increasing temperature
systems with initial points inside this region exhibit disco
tinuous cone-to-plane, discontinuous plane-to-axis, and
continuous axis-to-planeCPAP SRT’s, together with a type
change of the FOMP:P1C-A2-A1-P1-A1 @Fig. 16~y!#.
The discontinuous cone-to-plane SRT and the type chang
the FOMP fromP1C to A2 are connected with the crossin
of the anisotropy flow with borderlineo8, and the successiv
PAP SRT and type change of the FOMPA2-A1-P1-A1 are
the same as in region 12.

P1C-A2-A1. Region 14 is enclosed by curvesc8, c, and
o8. A discontinuous cone-to-planeCP SRT and a change o
type of FOMPP1C-A2-A1 are found for systems with ini
tial points inside this region@Fig. 16~z!#. The crossing of the
first part of the trajectoryz1-z2-z3 in Fig. 10, with border-
line o8, is connected with SRT and the type change of
FOMP from P1C to A2. The subsequent change of FOM
from A2 to A1 type arises from the crossing with borderlin
r 8. Finally, when the third part of the trajectoryz1-z2-z3
crosses borderlinen8 in the first quadrant, theA1-type
FOMP reaches its critical temperatureTcr3.

In the remaining region below linen and curveq8 in Fig.
11, no FOMP can be observed at any temperature bec
the anisotropy flow originating from this region does n
cross any borderline for the existence of a FOMP in
parameter space~x-y!. As to SRT, this region can be divide
into three subregions by linesl andb ~see Fig. 9 in Ref. 22!.
In the subregion above linel, no SRT can be observed.
continuous cone-to-plane~CP! SRT can be observed in th
subregion between linesl and b, and a continuous cone-to
axis ~CA! SRT in the subregion below lineb. The thermal
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behavior of the FOMP’s and SRT’s existing in systems w
initial points inside each region in Fig. 11 are summarized
Table II.

So far, we have analyzed the 12~Fig. 5! and 14~Fig. 11!
types of thermal behaviors of the FOMP’s for the cases
K1

0.0 andK1
0,0, respectively. In total, there are 23 diffe

ent types of thermal behaviors of the FOMP in a single-
one-sublattice system, depending on the different comb
tions of the three initial anisotropy constants. In the case
K3

050, only three kinds of thermal behaviors of the FOM
were found. This demonstrates that the third anisotropy c
stant plays a highly important role in diversifying the tem
perature behavior of the system. Further inspection rev
that the 23 types of thermal behavior of the FOMP can
regarded as different assemblies of 17 kinds of elemen
thermal variations of the FOMP:~1! A1, ~2! A1C, ~3! A2,
~4! P1, ~5! P1C, ~6! P2, ~7! A2-A1, ~8! P2-P1, ~9!
A1C-A1, ~10! A1C-P2, ~11! P2-A1C, ~12! P1-A1, ~13!
A1-P1, ~14! P1C-A2, ~15! A2-P1C, ~16! P1C-P1, and
~17! A2-P1. The last arisen FOMP disappears in Fig. 10
borderlinen8 for the A1 andA1C variations, atq8 for the
A2 variation, atn for the P1 andP1C variations, and atq
for the P2 variation. Type changesA2-A1 and P2-P1 of
the FOMP occur at borderlinesr 8 and r, respectively. No
SRT takes place at the critical temperatures for these
kinds of type changes of the FOMP, and the kink in t
thermal curve ofDmcr provides a straightforward method t
determine the critical temperatures. The other nine kinds
type changes of the FOMP are accompanied by some k
of SRT occurring at the critical temperatures. The ty
changeA1C-A1 of the FOMP occurs at borderline 1 to
gether with ~CP! SRT, A1C-P2 at o together with CA,
P2-A1C at o together withAC, P1-A1 at m together with
AP, A1-P1 at m together withPA, P1C-A2 at o8 together
with CP, A2-P1C at o8 together withPC, P1C-P1 at the
zero point ofK1(t) together with~CA!, A2-P1 at the zero
point of K1(t) together with PA. In these nine types o
changes of the FOMP, the critical temperature of the FO
is equal to the SRT temperature.

IV. SUMMARY

We have systematically investigated all possible types
the thermal behavior of the FOMP in a single-ion on
sublattice system within the two- and three-constant appr
mations to the uniaxial anisotropy free energy. Based on
relations between the anisotropy constants and the anisot
coefficients, we have employed a powerful parame
method to calculate the temperature behavior of a sys
within the MF approximation. An analysis of the anisotrop
flow in the parameter space has enabled us to find all p
sible types of thermal variations of the FOMP. In the tw
constant approximation, there are three types of thermal
haviors of the FOMP. In the three-constant approximati
12 types are found in the case ofK1

0.0 and 14 types in the
case ofK1

0,0. The phase diagrams concerning the con
tions for their existence in the initial parameter spaces
presented after exhausting the observation of the anisot
flows originating from different initial points. The relatio
4-13
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TABLE II. Summary of the thermal behavior of FOMP’s and SRT’s observed in a single-ion
sublattice system with an initial point inside each region in Fig. 11~in the case ofK1

0,0!. The asterisk points
to the remaining region outside the 14 nominated regions. The arrow indicates the direction of incr
temperature, and the letter above it is the borderline where the transition takes place. The letter ins
parentheses in the FOMP column is the borderline where the FOMP disappears. The parentheses in
column indicate that the transition is of second order.

No. FOMP SRT

1 A1(n8) /

2 A1C ——→
l

A1(n8) (C ——→
l

P)

3 A1C(n8) (C ——→
K150

A),/,(C ——→
l

P)

4 A2 ——→
r 8

A1(n8) /

5 A2(q8) /

6 P1C ——→
o8

A2(q8) C ——→
o8

P

7 P1C(n) (C ——→
K150

A),/,(C ——→
l

P)

8 P1C ——→
K150

P1(n) (C ——→
K150

A)

9 A2 ——→
o8

P1C ——→
K150

P1(n) P ——→
o8

(C ——→
K150

A)

10
A2 ——→

K150

P1 P ——→
K150

A

11 P1C ——→
o8

A2 ——→
K150

P1 C ——→
o8

P ——→
K150

A

12 A2 ——→
r 8

A1 ——→
m

P1 ——→
m

A1(n8) P ——→
m

A ——→
m

P

13 P1C ——→
o8

A2 ——→
r 8

A1 ——→
m

P1 ——→
m

A1(n8) C ——→
o8

P ——→
m

A ——→
m

P

14 P1C ——→
o8

A2 ——→
r 8

A1(n8) C ——→
o8

P

* / (C ——→
K150

A),/,(C ——→
l

P)
ha
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th
or
he
d/
h
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between the SRT’s and the thermal behavior of FOMP’s
been discussed in detail. Seventeen types of elementary
mal changes of the FOMP’s have been derived from all
possible types of thermal behavior of the FOMP’s. The n
malized amplitude of the FOMP’s, the critical field, and t
critical temperature are given for each type of change an
disappearance of the FOMP’s. Prototype substances to w
our analysis applies are all materials in which there is a w
defined single-ion contribution to the overall anisotropy ar
ing from magnetic rare-earth ions.

ACKNOWLEDGMENTS

The present work was carried out within the scienti
exchange program between China and the Netherlands,
partly supported by the National Natural Science Founda
of China~Grant No. 59725103! and by the Science and Tech
nology Commission of Shenyang and Liaoning.

APPENDIX A

In uniaxial symmetry, the relations between the anis
ropy constantsKi and anisotropy coefficientsk̄n are

K1~ t !5~K1
01 8

7 K2
01 8

7 K3
0!k̄2~ t !

2 8
7 ~K2

01 18
11 K3

0!k̄4~ t !1 8
11 K3

0k̄6~ t !, ~A1!
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nd
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t-

K2~ t !5~K2
01 18

11 K3
0!k̄4~ t !2 18

11 K3
0k̄6~ t !, ~A2!

K3~ t !5K3
0k̄6~ t !. ~A3!

The anisotropy coefficientsk̄n can be expressed as line
combination of the momentsMn[^( Ĵz)

n&:

k̄25
1

p2~J!
@3M22J~J11!#, ~A4!

k̄45
1

p4~J!
@35M41~25230J230J2!M213J2~J11!2

26J~J11!#, ~A5!

k̄65
1

p6~J!
$231M61@7352315J~J11!#M41@294

2525J~J11!1105J2~J11!2#M2260J~J11!

140J2~J11!225J3~J11!3%. ~A6!

The momentsMn can be deduced from the momen
generating functionV(a,x):
4-14
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Mn~x!5
]n

]an V~a,x!U
a50

5
]n

]an

sinhF2J11

2
~a1x!G Y sinh@~a1x!/2#

sinhS 2J11

2
xD Y sinh~x/2!

.

~A7!

Within the MF approximation, the relation between the ge
eralized effective fieldx and the normalized temperaturet is

x5
3

J11

m

t
. ~A8!

APPENDIX B

The equations of some borderlines in Figs. 5 and 11 ar
follows:22

l : 2x013y01150, ~B1!

m: x01y01150, ~B2!

n: 6x0115y01150, ~B3!

n8: 4x02150, ~B4!

o: x0
224y050, ~B5!

o8: x0
222x0y023y0

224y050, ~B6!

q: 3x0
225y050, ~B7!

q8: 3x0
218x0y0112y0

225y050, ~B8!

r : x0
425x0

3y0161x0
2y0

21255x0y0
31225y0

428x0
2y0

152x0y0
21105y0

3116y0
250, ~B9!

r 8: x0
41x0

3y028x0
2y0236x0y0

2227y0
3116y0

250,
~B10!

b: 7x017y01850, ~B11!
e

ys

d

10441
-

as

e: 525y0
7~718x018y0!111229~11x0118y0!1850,

~B12!

f : 3718y0
7~718x018y0!1127311~11x0118y0!1850,

~B13!

g: 418y0
7~718x018y0!111~11x0118y0!1850,

~B14!

g8: 311157y0
7~718x018y0!112~11x0118y0!1850,

~B15!

i : 8~10y0!7~718x018y0!112~11x0118y0!1850.
~B16!

APPENDIX C

The equations of the borderlines among the six types
FOMP’s,A1, A1C, A2, P1, P1C, andP2 at arbitrary tem-
perature in Fig. 10 are as follows:9

l : 2x13y1150, ~C1!

m: x1y1150, ~C2!

n: 6x115y1150, ~C3!

n8: 4x2150, ~C4!

o: x224y50, ~C5!

o8: x222xy24y23y250, ~C6!

p: x223y50, ~C7!

q: 3x225y50, ~C8!

q8: 3x218xy112y225y50, ~C9!

r : x425x3y161x2y21255xy31225y428x2y152xy2

1105y3116y250, ~C10!

r 8: x41x3y28x2y236xy2227y3116y250,
~C11!
. J.

l

1G. Asti, in Ferromagnetic Materials, edited by K. H. J. Buschow
and E. P. Wohlfarth~Elsevier, Amsterdam, 1990!, Vol. 5, pp.
398–464.

2M. Yamada, H. Kato, H. Yamamoto, and Y. Nakagawa, Phys. R
B 38, 620 ~1988!.

3T. S. Zhao, H. M. Jin, G. H. Guo, X. F. Han, and H. Chen, Ph
Rev. B43, 8593~1991!.

4H. M. Jin and Y. Yan, Phys. Rev. B48, 1022~1993!.
5X. C. Kou, T. S. Zhao, R. Gro¨ssinger, H. R. Kirchmayr, X. Li, and

F. R. de Boer, Phys. Rev. B47, 3231~1993!.
6L. Pareti, A. Paoluzi, F. Alberini, M. R. Ibarra, L. Morellon, an
v.

.

P. A. Algarabel, J. Appl. Phys.76, 7473~1994!.
7P. J. von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr., and B

Korte, Phys. Rev. B58, 14 436~1998!.
8A. S. Ermolenko and A. F. Rozhda, IEEE Trans. Magn.MAG-14,

676 ~1978!.
9G. Asti and F. Bolzoni, J. Magn. Magn. Mater.20, 29 ~1980!.

10G. Asti and F. Bolzoni, J. Appl. Phys.58, 1924~1985!.
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