Large cryogenic magnetocaloric effect of DyCo₂ nanoparticles without encapsulation

S. Ma,1,2,a) W. B. Cui,1 D. Li,1 N. K. Sun,1 D. Y. Geng,1 X. Jiang,2 and Z. D. Zhang1

1Shenyang National Laboratory for Material Science, Institute of Metal Research, and International Centre for Material Physics, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People’s Republic of China
2Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany

(Received 28 March 2008; accepted 12 April 2008; published online 1 May 2008)

The structure and formation of nanoparticles without encapsulation of the intermetallic compound DyCo₂ were investigated by using x-ray diffraction and high-resolution transmission electron microscopy. The DyCo₂ nanoparticles are stable in air without any shell protection. A large magnetic-entropy change of 13.2 J kg⁻¹ K⁻¹ was found at 7.5 K in an applied-field change from 1 to 7 T, which is ascribed to the large magnetic moment density and the weak interaction energy in the nanoparticles. Such oxidation-resistant rare-earth transition-metal compound nanoparticles with large cryogenic magnetocaloric effect are useful for refrigeration applications at low temperatures. © 2008 American Institute of Physics. [DOI: 10.1063/1.2919079]

With increasing demands on environmental protection, the conventional refrigeration technologies, which are based on the gas-compression/expansion mechanism, are being gradually replaced by the environment-friendly magnetocaloric techniques. Recently, giant magnetocaloric effects (MCE) have been observed near room temperature at first- or second-order phase transitions.1–4 At lower temperatures (T < 20 K), however, magnetic refrigeration can seldom be realized by employing these types of MCE because these phase transitions usually occur at higher temperatures. As a result, researchers have tried to find large MCE in paramagnetic or superparamagnetic systems.5–7 However, only little attention has been paid to the possibly large MCE in nanoparticles of rare-earth transition-metal compounds composed of rare-earth and transition metals, where the rare-earth atoms have a large magnetic moment. The reason is that rare-earth atoms very easily oxidize in air and the rare-earth transition-metal compounds do not form at nanoscale without shell protection. Although a large magnetic-entropy change (−ΔSM representing the magnitude of the MCE) of 18.7 J kg⁻¹ K⁻¹ has been obtained in the case of GdAl₂/Al₂O₃ nanocapsules at 7.5 K in a magnetic-field change (ΔB) of 6 T, the Al₂O₃ shell with low thermal conductivity may decrease their application potential in a refrigeration process.5

In this letter, we report on the synthesis of a type of nanoparticles of the intermetallic compound DyCo₂ by a modified arc-discharge technique. The DyCo₂ nanoparticles have a large −ΔSM value of 13.2 J kg⁻¹ K⁻¹ at 7.5 K at ΔB = 6 T. This work may stimulate the preparation and investigation of other oxidation-resistant nanoparticles with large cryogenic MCE of rare-earth transition-metal compounds.

The DyCo₂ nanoparticles were prepared by a modified arc-discharge process similar to the one used in our previous work.8 A Dy₃₀Co₇₀ alloy ingot was used as the anode. When the base vacuum of the arc-discharge chamber reached 7.3 × 10⁻³ Pa, Ar and H₂ were introduced into the chamber with partial pressures of 2.0 × 10⁴ and 3.0 × 10³ Pa, respectively. Then, the arc was started and the discharge current was maintained at 20 A for 5 h. After passivation with fresh Ar gas for 48 h, the product in the form of powder was collected. The phase composition and the microstructure analyses were performed by using powder x-ray diffraction (XRD) with Cu Kα and high-resolution transmission electron microscopy (HRTEM) employing 200 kV. The magnetic measurements were carried out in a superconducting quantum interference device magnetometer.

The XRD pattern shown in Fig. 1 reveals that the particles are composed of DyCo₂ and Dy₂O₃. The formation mechanism of these two kinds of particles can be explained on the basis of the evaporation of metal atoms and the bumping principle.8 With a lower boiling point of 2835 K compared to that of Co (3201 K), Dy atoms evaporated more easily into the chamber from the melting pool of the anode alloy. Therefore, the anode composition of Dy:Co = 30:70 assures an appropriate Dy/Co ratio in the chamber to form the DyCo₂ compound. However, due to the lower boiling point of Dy, there still exists some surplus of evaporated Dy atoms in the chamber, which form Dy particles. Subsequently, the Dy particles are oxidized in the air atmosphere. With other atomic Dy/Co ratios as anode composition, only fcc Co or Dy₂O₃ can be formed. Thus, an appropriate atomic

a)Electronic mail: song.ma@uni-siegen.de.

FIG. 1. XRD pattern of the product prepared by arc-discharging Dy₃₀Co₇₀ alloy.
It is interesting to note that in Fig. 2, the temperature was varied from 5 to 90 K with steps of 5 K [Fig. 3(a)]. At 5 K and 7 T, the magnetization of DyCo$_2$ is 119 A m2 kg$^{-1}$, which almost equals to the corresponding value (123.81 A m2 kg$^{-1}$) of GdAl$_2$/Al$_2$O$_3$ nanocapsules, although some Dy$_2$O$_3$ nanoparticles exist in the sample, which decrease the mass that is effective in the magnetic measurement (due to their mixture with DyCo$_2$) of the powder mixture. The reason is that DyCo$_2$ has a larger magnetic moment of 7.83 μB, than GdAl$_2$ (7.2 μB) and as a result the DyCo$_2$ system has a moment density higher than that of GdAl$_2$ system.\(^8\,10\)

Avoiding the difference between ZFC and field-cooled (FC) processes, which is typical for superparamagnetic particles in low fields, the ΔS_M of the magnetic nanoparticles can be defined between two states at finite magnetic-field values.\(^8\) The ΔS_M of the nanoparticles can be derived by using the Maxwell relationship given by $\Delta S_M(T, B) = \int_{B1}^{B2} (\partial M/\partial T)_B dB$. In Fig. 3(b), by using the numerical approximation $\Delta S[(T_{n+1} + T_n)/2,B] = \Sigma[(M_{n+1} - M_n)/(T_{n+1} - T_n)]\Delta B$,\(^8\) the calculated ΔS_M values of DyCo$_2$ nanoparticles are shown as a function of temperature (varying between 5 and 90 K) after a field change of 6 T. It is interesting to note that ΔS_M rapidly increases with decreasing temperature and reaches the largest value of 13.2 J kg$^{-1}$ K$^{-1}$ at 7.5 K. For conventional MCE materials, the large ΔS_M generally appears near the transition temperature of the first-order magnetostructural or the second-order magnetic transition. According to the ZFC-FC magnetization curves shown in Fig. 3(c), however, no phase transition occurs in the present sample at temperatures between 5 and 90 K at 1 T. The rapid increase in dM/dT value with decreasing temperature [see the inset of Fig. 3(c)] indicates that the DyCo$_2$ nanoparticles have a large $(\partial M/\partial T)_B$.
generating a large $-\Delta S_M$ in the low-temperature range, according to the Maxwell relationship.

It has been reported that DyCo$_2$ nanoparticles show superparamagnetic behavior below their Curie temperature of 142 K (little lower than 145 K of bulk DyCo$_2$). The magnetic nanoparticles, however, may enter the spin-glass state due to the strong interaction between them, if they are pressed together for the magnetic measurement. In the present case, according to Fig. 3(c), such strong interaction can be excluded due to (i) the overlap of the ZFC-FC curves in the applied field of 1 T, indicating reversible behavior in the ZFC and FC processes, and (ii) the value of the paramagnetic Curie temperature $\theta =$−4.5 K by extrapolation of the reciprocal dc susceptibility of the FC curve, which is quite different from the corresponding value $\theta =$−170 K of the spin-glass system. The reason for the weak interaction among the DyCo$_2$ nanoparticles is the presence of nonmagnetic Dy$_2$O$_3$ particles that mixed with DyCo$_2$ particles and prevent adequate physical contact of the DyCo$_2$. Furthermore, the magnetization variation of superparamagnetic DyCo$_2$ nanoparticles is determined by the Zeeman energy, thermal-excitation energy (k_BT), anisotropy-energy barrier, and weak interaction energy, which have both excitation and hindrance effect on the rotation of the magnetic moments. At a certain low temperature and a constant magnetic field (for instance at 5 K and 7 T), these four kinds of energies maintain a balance. When the temperature and applied field are changed, the balance among these energies will be disturbed and, as a result, the Zeeman energy and k_BT will help to overcome the hindrance of the anisotropy-energy barrier and the weak interaction energy to change the orientations of the magnetic moments. Due to the presence of a high moment density in the DyCo$_2$ nanoparticles, the variation of temperature and magnetic field will force a large amount of moments to change their orientation. A large change of magnetic order will therefore be generated, leading to large $(\partial M/\partial T)_B$. On the other hand, the coercivity depends strongly on the anisotropy-energy barriers. The coercive force of 0.0854 T of the DyCo$_2$ nanoparticles is much higher than that of GdAl$_2$/Al$_2$O$_3$ nanocapsules (0.0291 T) at 5 K, which indicates the higher anisotropy-energy barrier of the former [Fig. 3(d)]. Although the appearance of large anisotropy-energy barriers reinforces the hindrance of the rotation of the DyCo$_2$ moments, the large moment density still assures the large $-\Delta S_M$ of 13.2 J kg$^{-1}$ K$^{-1}$ at 7.5 K with $\Delta B = 6$ T. Moreover, the existence of nonmagnetic Dy$_2$O$_3$ nanoparticles also leads to the deterioration of $-\Delta S_M$ because, when mixed with DyCo$_2$ nanoparticles, they decrease the effective mass of the samples.

In conclusion, nanoparticles without encapsulation of the intermetallic compound DyCo$_2$ have been prepared by a modified arc-discharge technique. The irregular spherical-shaped DyCo$_2$ nanoparticles are of good crystallinity, which are stable and exist in air without protection of any shells. In a field change ΔB of 6 T, $-\Delta S_M$ of the DyCo$_2$ nanoparticles quickly increases with decreasing temperature from 90 to 5 K and reaches a maximum of 13.2 J kg$^{-1}$ K$^{-1}$ at 7.5 K. The large $-\Delta S_M$ of the DyCo$_2$ nanoparticles is a result of the large magnetic moment density and the weak interaction energy. These DyCo$_2$ nanoparticles may be as very promising magnetocaloric material for low-temperature refrigeration applications.

This work was supported by National Natural Science Foundation of China under Grant No. 50331030.