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The magnetocaloric effect associated with magnetic phase transitions in �-Co�OH�2 nanoparticles
has been investigated. A sign change in the magnetocaloric effect is induced by a magnetic field,
which is related to a field-induced transition from the antiferromagnetic to the ferromagnetic state
below the Néel temperature. The large reversible magnetic-entropy change −�Sm �20.9 J /kg K at
15 K for a field change of 7 T� indicates that �-Co�OH�2 is a potential candidate for application in
magnetic refrigeration in the low-temperature range. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3028337�

Due to its energy-efficient and environment-friendly fea-
tures, magnetic refrigeration based on the magnetocaloric ef-
fect �MCE� has recently become a promising alternative for
gas-compression refrigeration technology which is presently
widely used.1–10 However, up to now, the MCE has been
used in magnetic refrigerant devices mainly in the low-
temperature range �T�20 K� by using the paramagnetic
�PM� salt Gd3Ga5O12.

11 Therefore, it is of interest to explore
magnetic refrigerant materials with a large MCE in other
temperature ranges. A large MCE can be obtained near the
magnetic-ordering temperature because an external magnetic
field greatly influences the spin ordering. A giant MCE is
usually found to be related to a field-induced first-order mag-
netic transition �FOMT�.12–17 However, a FOMT usually
gives rise to considerable thermal/magnetic hysteresis which
is disadvantageous for application. Therefore, much attention
has been focus on finding new materials with a large MCE
and a small thermal/magnetic hysteresis. A giant MCE has
been observed in antiferromagnetic �AFM� systems,6,18 origi-
nating from a field-induced transition from a collinear AFM
to a triangular AFM �or ferromagnetic �FM�� state. As the
thermal/magnetic hysteresis is quite small for the AFM sys-
tems, compared to giant-MCE FM materials, they are more
suitable for application from the aspect of refrigerant effi-
ciency and energy conservation. A few investigations have
been focused mainly on the preparation and structure of co-
balt hydroxide �-Co�OH�2.19–21 The magnetic properties
have been reported in Ref. 22. In this letter, we present the
magnetic and magnetocaloric properties of the antiferromag-
net �-Co�OH�2 at low temperatures. A giant negative
magnetic-entropy change is found, together with a field-
induced MCE conversion �the MCE changes its sign in the
applied magnetic field�.

�-Co�OH�2 nanoparticles have been fabricated by a sol-
gel method, by reacting aqueous solutions of cobalt chloride
CoCl2 ·6H2O and sodium hydroxide NaOH at pH=12 at
room temperature. The resulting gel was washed several
times with distilled water until it is free from chloride ions.
The gel was then dried at 353 K for 8 h to obtain �-Co�OH�2

powder. In this process, precautions were taken to avoid any
contamination to ensure the purity of the sample. The x-ray

diffraction pattern confirms the single-phase state of the par-
ticles, crystallizing in the hexagonal Mg�OH�2-type structure

�space group P3̄m1�.23 The average grain size of the powder
was determined to be about 20 nm by the Scherrer formula.24

The lattice parameters a and c were determined to be 3.173
and 4.640 Å, respectively, by using the Rietveld refinement
method. The magnetic properties were measured in a super-
conducting quantum interference device magnetometer from
4 to 300 K at applied fields up to 7 T. The powder was fixed
by paraffin in a capsule in order to immobilize the randomly
oriented powder particles during the measurements.

The temperature dependences of the magnetic suscepti-
bility � and the inverse magnetic susceptibility in a magnetic
field of 0.01 T are shown in Fig. 1. It can be seen that the
�-Co�OH�2 undergoes a PM-AFM transition at the Néel tem-
perature of TN�11 K, somewhat lower than the value of
12.3 K reported in Ref. 22. Between 200 K and the room
temperature, � obeys the Curie–Weiss law with a positive
paramagnetic Curie temperature of 15�3 K �20 K in Ref.
22�. The effective magnetic moment per Co ion is found to
be 4.8�B �5.2�B in Ref. 22�.

Figure 2 shows the magnetization curves of �-Co�OH�2

between 4 and 28 K with �T=2 K. Below TN, the magneti-
zation increases gradually with the applied field in the low-
field range and then jumps at a critical field but remains
unsaturated even at 7 T. The step in the magnetization curves
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FIG. 1. �Color online� Temperature dependence of the magnetic suscepti-
bility and the inverse magnetic susceptibility of �-Co�OH�2 measured at an
applied magnetic field of 0.01 T.
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indicates a clear field-induced AFM to FM phase transition.
The critical magnetic field Bc �determined by the maximum
of dM /dB� of the magnetic transition is about 2 T. In order to
further understand this magnetic transition, the temperature
dependence of the magnetization M�T� in different applied
fields is plotted in Fig. 3 �temperature range from 4 to 28 K
with �T=2 K�. A field-induced transition from AFM to FM
state below TN is found. The critical magnetic field �deter-
mined from the maximum of dM /dB� for this transition is
about 2 T. The inset in Fig. 3 presents dM /dT versus T
curves in the applied fields of 1.7, 2.1, and 3.1 T; it is found
that all the minimum values of the dM /dT are at about 15 K,
indicating that the largest magnetic-entropy change may be
expected at this temperature.

The magnetic hysteresis loop at 5 K in an applied field
of 5 T is shown in Fig. 4. It can be noticed that the coercivity
is extremely small �only about 0.008 T� and the remanent
magnetization is close to zero. Furthermore, there is nearly
zero magnetic hysteresis in the transition field. Compared to
typical giant-MCE materials �such as Gd5�Ge1−xSix�4,12 in
which the magnetic hysteresis is about 1 T near the
magnetic-transition temperature�, the small magnetic hyster-
esis of �-Co�OH�2 is advantageous for application.

A large MCE is expected around TN where the magneti-
zation rapidly changes with varying temperature. The iso-

thermal entropy change was derived from the magnetization
data by means of the expression �Sm�T ,B�=�0

B��M /�T�dB
that can be obtained from the Maxwell relation. The curves
of −�Sm versus T are given in Fig. 5. It can be seen that, for
small magnetic-field changes, −�Sm is negative �inverse
MCE� below TN, whereas it changes to small positive values
with increasing temperature. Usually, the inverse MCE is
observed in first-order magnetic transitions such as
AFM/FI,10 AFM/FM,25 or collinear AFM/triangular AFM.6

The inverse MCE has also been reported in AFM/PM tran-
sition systems,7 in which the applied field results in a further
spin-disordered state near the transition temperature, which
increases the configurational entropy.9 When the applied
magnetic field is higher than 3 T, a positive cusp-shaped
−�Sm with peak position at 15 K is observed which is con-
sistent with the minimum value of dM /dT �inset in Fig. 3�.

The inset in Fig. 5 presents −�Sm versus �B at 9 K,
where a minimum value of −1.55 J /kg K of −�Sm is found
for �B=1.7 T. The applied field destroys the antiparallel
alignment of the spin moments, and the spin disorder will
result in a negative −�Sm, becoming more negative with in-
creasing applied field. However, the value of −�Sm increases
with further increasing magnetic field due to the field-
induced transition from the AFM to the FM state and be-
comes positive at 2.7 T. The field-induced AFM to FM tran-

FIG. 2. �Color online� Magnetic isotherms of �-Co�OH�2 measured between
4 and 28 K with a temperature step of 2 K.

FIG. 3. �Color online� Temperature dependence of the magnetization at
different magnetic fields obtained from M�B� data shown in Fig. 2. Inset:
dM /dT vs T at 1.7, 2.1, and 3.1 T.

FIG. 4. Magnetic hysteresis loop of �-Co�OH�2 at 5 K in applied fields up
to 5 T. Inset: the hysteresis loop at 5 K in low fields.

FIG. 5. �Color online� Negative magnetic-entropy change −�Sm of
�-Co�OH�2 as a function of temperature for different magnetic field changes
��B�. Inset: −�Sm as a function of �B at 9 K.
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sition is responsible for the conversion from the inverse to
the conventional MCE in �-Co�OH�2. The maximum of
−�Sm of 20.9 J /kg K at 15 K for �B=7 T is comparable
with the giant MCE reported for DySb in Ref. 7
�20.6 J /kg K at 11 K for �B=7 T�. The slope of the curve
in Fig. 5 is relatively small, and the smooth variation in
−�Sm with temperature is more useful than a sharp one,
which is another property of �-Co�OH�2 that makes it a
promising magnetorefrigerant.

In conclusion, below TN a field-induced MCE conver-
sion is observed in �-Co�OH�2 due to the field-induced tran-
sition from the AFM to FM states. The giant value of −�Sm
�20.9 J /kg K at 15 K for the field change of 7 T� almost
without hysteresis makes �-Co�OH�2 a potential material for
magnetic refrigeration in the low-temperature range.
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