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The speed of sound of a Bose-Einstein condensate in an optical lattice is studied both analytically and
numerically in all spatial three dimensions. Our investigation shows that the sound speed depends strongly on
the strength of the lattice. In the one-dimensional case, the speed of sound falls monotonically with increasing
lattice strength. The dependence on lattice strength becomes much richer in two and three dimensions. In the
two-dimensional case, when the interaction is weak, the sound speed first increases and then decreases as the
lattice strength increases. For the three-dimensional lattice, the sound speed can even oscillate with the lattice
strength. These rich behaviors can be understood in terms of compressibility and effective mass. Our analytical
results in the limit of weak lattices also offer an interesting perspective to help with our understanding: they
show that the lattice component perpendicular to the sound propagation increases the sound speed while the
lattice component parallel to the propagation decreases the sound speed. The various dependences of the sound
speed on the lattice strength are the result of this competition.
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I. INTRODUCTION

A Bose-Einstein condensate �BEC� in an optical lattice
has recently attracted great interest both experimentally and
theoretically �1,2�. The presence of a lattice can remarkably
enrich the behaviors of the system compared to the uniform
case, providing fertile ground for exploring a variety of
solid-state effects in BECs—for example, Bloch oscillations
�3–5� and Landau-Zener tunneling �6–10� between Bloch
bands in an accelerating optical lattice. Moreover, a BEC in
an optical lattice can be considered as a quantum simulator
and therefore used for testing fundamental theoretical con-
cepts �2�. For example, it can be used to simulate the Bose-
Hubbard model and study experimentally the quantum phase
transition between a superfluid and Mott insulator �10,11�.

In this article, we launch a systematic study of the speed
of sound for a BEC in an optical lattice in all spatial three
dimensions. The speed of sound is important for two simple
reasons: �a� it is a basic physical parameter that tells how fast
the sound propagates in the system, and �b� it is intimately
related to superfluidity according to Landau’s theory of su-
perfluids. Because of these, the sound propagation and its
speed were one of the first things that have been studied by
experimentalists on a BEC since its first realization in 1995
�12�. The propagation of sound in a harmonically trapped
condensate without a lattice has already been observed ex-
perimentally �13,14� and studied theoretically �15–20�. Now
there are experimental efforts to measure the sound speed for
a BEC in an optical lattice �22�.

There has been a great deal of theoretical work done to
understand the sound speed for a BEC in an optical lattice.
These studies show that three parameters strongly affect the
speed of sound: the strength of the optical lattice, v; the
interaction between atoms, c; and the lattice dimension D
�D=1,2 ,3� �21�. In Ref. �23�, the phonon excitations of the
BECs in a one-dimensional optical lattice �D=1� were theo-

retically investigated by solving the Bogoliubov equations.
Their analytical results for the sound speed in the weak po-
tential limit predicted that the sound speed decreases mono-
tonically with increasing depth of the optical lattice. The
most detailed study of sound propagation in one-dimensional
�1D� lattices was done by Stringari and co-workers �24,25�,
who also found that the sound speed is suppressed by the
lattice. In particular, Ref. �24� presents a detailed comparison
between the sound speed obtained by the Bogoliubov theory
and the one obtained from the compressibility and the effec-
tive mass. Similar results �26� were also obtained for the
Krönig-Penney potential, a special form of the periodic po-
tential. Furthermore, Martikainen and Stoof �27� examined
the effect of the transverse breathing mode on the longitudi-
nal sound propagation for a BEC in a one-dimensional opti-
cal lattice. In particular, they discussed how the coupling
with the transverse breathing mode influences the sound ve-
locity in an optical lattice. Krämer et al. �28� also studied the
effect of the transverse degrees of freedom on the velocity of
sound of a BEC in a 1D optical lattice and radially confined
by a harmonic trap. A recent paper by Taylor and Zaremba
�29� studied the Bogoliubov excitations of a BEC in an op-
tical lattice in all spatial dimensions. However, in the formu-
lation in Ref. �29� the authors did not present the concrete
results of sound speed in the two- and three-dimensional
cases �D=2,3�. Most interestingly, with numerical calcula-
tions Boers et al. �30� found that the sound speed of a BEC
in a three-dimensional optical lattice achieves a maximum
with increasing lattice depth. Because of the difficulty to
obtain the Bloch states with interaction, the investigation of
Boers et al. is limited to low density so that the Bloch wave
function of the free particle can be used as an approximation.

Our investigation here tries to overcome the deficiencies
in previous studies to give a complete picture of how the
sound speed is affected by the lattice strength v; the interac-
tion between atoms, c; and the dimensionality D. Analytical
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approaches are used in two limiting cases: weak lattices and
strong lattices. For weak lattices, they can be viewed as per-
turbations. In this case, we obtain an analytical expression to
the second order of the lattice strength for the sound speed of
a BEC in an arbitrary periodic potential. We have analyzed
this result for the important case of the periodic potential
being an optical lattice. Our analysis finds a strong depen-
dence of the sound speed on the lattice dimensions. Espe-
cially, we find that the lattice component perpendicular to the
sound propagation increases the sound speed while the lat-
tice components parallel to the propagation suppresses the
sound speed. Since the lattice can only be parallel to the
propagation direction of sound in one-dimensional �D=1�
optical lattices, the sound speed falls monotonically with in-
creasing lattice strength. In two- and three-dimensional �D
=2,3� optical lattices, there are both perpendicular and par-
allel components in the lattice and, therefore, there is com-
petition. As a result, there is a rich dependence of the sound
speed on lattice strength in the case of D=2,3. The sound
speed can first increase and then decrease as the lattice
strength increases. We have also tried to understand these
results from a different angle—i.e., in terms of compressibil-
ity � and effective mass m*. The analytical expression is
found for compressibility � and effective mass m* for a BEC
in an optical lattice. We find that the effect of the lattice on
the sound speed reflects competition between the slowly de-
creasing compressibility � and the increasing effective mass
m* with increasing lattice depth.

In the limit of strong lattices, it is reasonable to use the
tight-binding model to describe the BEC of dilute density in
an optical lattice �31�. Our analytical results display that the
sound speed always exponentially decreases with the in-
crease of lattice strength, independent of dimension D. This
universal behavior of sound speed is the result of the com-
petition between the tunneling strength J between adjacent
sites and the interaction U between the atoms at a lattice site:
with the increase of lattice depth, U slowly increases while J
exponentially decreases.

Our analytical results are complemented by our numerical
study, where the results are obtained for all ranges of lattice
strength. Our numerical results agree well with our analytical
results both in weak potential and tight-binding limits for the
case of weak interatomic interaction. For the intermediate
strength of lattices, we find that the sound speed even oscil-
lates with the lattice strength for a three-dimensional optical
lattice. We emphasize that in our numerical calculations the
interaction between atoms is taken into account to compute
the Bloch states in all three dimensions. In Ref. �30�, the
interaction is neglected in computing Bloch states for BECs
and the Bloch states of free bosons were used as an approxi-
mation.

This paper is organized as follows. In Sec. II, for the sake
of self-containment and introducing the notation, we de-
scribe the basic theoretical framework of our study. It in-
cludes the definition of the sound speed vs, compressibility
�, and effective mass m*. In Sec. III, we present the analytic
results of the sound speed for a BEC in the optical lattice in
both the weak potential limit and tight-binding regime. Sec-
tion IV contains our numerical study of the sound speed. The
details of our numerical methods are given there. In Sec. V,

we discuss the possibility of observing the phenomena pre-
sented in this paper within the current experimental capabil-
ity. The last section �Sec. VI� contains a discussion of our
results and concluding remarks. Five appendixes are given at
the end to show the detailed steps to derive our key analyti-
cal results in the main text.

II. BASIC THEORY

A. Mean-field theory of Bose-Einstein condensates

We focus on the situation that the BEC system can be well
described by mean-field theory. In this case, the BEC system
is governed by the following grand-canonical Hamiltonian
�1�:

H =� d3r���*�r���−
1

2
�2 + Vlatt�r�����r�� +

c

2
	��r��	4

− �	��r��	2
 . �1�

In our case, the external potential is a three-dimensional op-
tical lattice created by six laser beams that are perpendicular
to each other �1,2�:

Vlatt�r�� = v�cos�x� + cos�y� + cos�z�� , �2�

where v characterized the strength of the optical lattice. In
Eq. �1�, all variables are scaled to be dimensionless by the
system’s basic parameters: the atomic mass m, the wave
number kL of the laser light, and the average density n0. The
chemical potential � and the strength v of the periodic po-
tential are in units of 4�2kL

2 /m, the wave function � is in
units of �n0, and r� is in units of 1 /2kL. The nonlinear coef-
ficient c=�n0as /kL

2, where as�0 is the s-wave scattering
length. In this article, the parameters c and v in Eq. �1� relate
to the parameters gn0 /ER and Vopt /ER, which are often used
in the literature �1�, as c=gn0 /8ER and v=Vopt /16ER with
ER=�2kL

2 /2m.
Sound is a propagation of low-density fluctuations inside

a system. To study sound in a BEC, one first needs to find out
the ground state of this BEC system, which serves as a me-
dium for sound propagation. The sound speed can then be
found by perturbing the ground state as explained in detail in
the next subsection.

The ground state of a BEC in an optical lattice is a Bloch
state at the center of the Brillouin zone. Briefly, the Bloch
state is of the form

��r�� = eik�·r��k��r�� , �3�

where k� is the Bloch wave vector and �k��r�� is a periodic
function with the same periodicity of the optical lattice. The
Bloch wave function �k��r�� satisfies the stationary Gross-
Pitaevskii equation

−
1

2
��� + ik��2�k� + c	�k�	2�k� + Vlatt�r���k� = ��k���k� , �4�

where ��k�� is the chemical potential. The energy of the sys-
tem in a Bloch state is given by
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E�k�� =� d3r���
k�
*�−

��� + ik��2

2
+ Vlatt�r����k� +

c

2
	�k�	4
 .

�5�

The set of energies E�k�� then forms a Bloch band �32,33�.
The Bloch state can be obtained analytically in certain cir-
cumstances �34�. In most cases, it has to be computed nu-
merically �32,35�. The numerical method of this study is de-
scribed in Sec. VI. To compute the sound speed, one may
only need the Bloch state �0 at k� =0. However, for the effec-
tive mass tensor defined by �29,36�

� 1

m*


�,	
= � �2E�k��

�k��k	


k=0

, �6�

where k= 	k�	 and � ,	=x ,y ,z, one has to compute Bloch
states in the vicinity of k� =0. We also study one- and two-
dimensional cases. The one-dimensional optical lattice is
given by

V�x� = v cos�x� , �7�

and the two-dimensional optical lattice is given by

V�x,y� = v�cos�x� + cos�y�� . �8�

B. Definitions of the sound speed

In Sec. II A, the BEC system is regarded as a Hamiltonian
system by the grand canonical Hamiltonian �1�; the corre-
sponding time-dependent Gross-Pitaevskii equation can be
obtained by the variation of the Hamiltonian, i�� /�t
=
H /
�*,

i
��

�t
= −

1

2
�2� + V�r��� + c	�	2� . �9�

In Eq. �9�, the time t is the units of m /4�kL
2. The Bogoliubov

equations can be determined from the linear stability analysis
of the GP equation �9�. To explore a small disturbance

�k��r� , t� at a Bloch state �k��r��, we write

��r�,t� = eik�·r�−i�t��k��r�� + 
�k��r�,t�� , �10�

where the disturbance can be similarly written as


�k��r�,t� = uk�e
i�q� ·r�−��q��t� + v

k�
*e−i�q� ·r�−��q��t�. �11�

Plugging Eq. �11� into Eq. �9� and keeping only the linear
terms, we arrive at the Bogoliubov equations �32�,


zMk��q���uk�

vk�
 = ��q���uk�

vk�
 , �12�

with

Mk��q�� = �L�k� + q�� c�k�
2

c�
k�
*2

L�− k� + q��
 �13�

and


z = �1 0

0 − 1
 , �14�

where L�q�� is defined as

L�q�� = −
1

2
��� + iq��2 + V�r�� − � + 2c	�k�	2. �15�

Note that q� represents the mode of the small perturbations
and is of the nature of a Bloch wave vector as the matrix M
is periodic.

In general, there are two equivalent definitions for the
sound speed in a BEC. As sound can be regarded as a long-
wavelength response of a system to a perturbation, the sound
speed can be extracted from the excitation of a BEC. Accord-
ing to the Bogoliubov theory, the excitation energy ��q�� of
the BEC in a Bloch state at k� =0 can be found by solving the
eigenvalue problem of Eq. �12�. In this paper, we only con-
sider the propagation of sound along one of the axes of the
optical lattice. In terms of the excitations, the sound speed of
a BEC system can be defined as

vs,i = lim
q→0

��q̂i�
q

, �16�

where q= 	qi
ˆ 	 and qi

ˆ is a vector along the i axis �i=x ,y ,z�.
The other definition arises when the BEC system is re-

garded as a hydrodynamics system. In this context, the sound
speed along the i axis �i=x ,y ,z� in a BEC is given by the
standard expression �24,25,37�

vs,i =� 1

�m
i
* , �17�

where the diagonal element m
i
* of the effective mass is de-

fined by m
i
*=d2E /dki

2 �i=x ,y ,z� and � is the compressibility
of the BEC system, defined as

�−1 = n0
��

�n0
, �18�

where the chemical potential � and n0 is the averaged den-
sity. For a BEC system with repulsive interatomic interac-
tion, the optical trapping reduces the compressibility of the
system as the effect of the repulsion is enhanced by squeez-
ing the condensate in each well. According to the definition
of sound speed in Eq. �17�, the sound speed reflects the com-
petition between the compressibility � and the effective mass
m*.

Both definitions are used in our computations, and they
agree with each other as expected. The proof of the equiva-
lence of these definitions can be found in Refs. �29,37�.

III. ANALYTICAL RESULTS

A. Weak potential limit

We consider first an arbitrary periodic potential Var�r��
with the periodicity of R� ,

Var�r�� = Var�r� + R� � , �19�

with
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R� = m1a�1 + m2a�2 + m3a�3, �20�

where r� is the position vector, a�1, a�2, and a�3 are the three
primitive vectors, and m1, m2, m3 range through all integral
values. In the weak potential limit, the periodic potential
Var�r�� can be regarded as a perturbation. This allows us to
solve both the Gross-Pitaevskii equation �4� and the Bogo-
liubov eigenvalue problem �12� perturbatively by expanding
the wave function � and chemical potential � of the BEC
system in the order of the weak potential,

� = ��0� + ��1� + ��2� + ¯ ,

� = ��0� + ��1� + ��2� + ¯ , �21�

where ��0� and ��0� are the zeroth order of the potential
strength, ��1� and ��1� the first order, etc. We find that the
sound velocity along a given direction indicated by a unit
vector r̂ is

vs = �c + 8�c�
n��0

� 	n� 	2

�4c + 	n� 	2�3 −
	n� · r̂	2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� .

�22�

We emphasize that Eq. �22� is an expression of the sound
speed along an arbitrary direction—i.e., not just along one of
the axes of the optical lattice. In Eq. �22�, Fn��V� is the Fou-
rier coefficient of Var�r�� as defined by

Fn��V� =
1

�
�

cell

d3r�Var�r��e−in� ·r�, �23�

with

n� = n1b�1 + n2b�2 + n3b�3, �24�

where nj’s are integers and b� j’s are the set of reciprocal
primitive vectors defined by

a� i · b� j = 2�
ij . �25�

In the integration, � is the volume of the primitive cell and
the integration is over one primitive cell. The detailed deri-
vation of Eq. �22� can be found in Appendix C.

The focus of this article is optical lattices as described in
Eqs. �2�, �7�, and �8�. In this special but important case, the
primitive vectors a�1, a�2, and a�3 can be chosen along the
directions of the laser beams, x�, y�, and z�, respectively. Also
we have 	a�1 	 = 	a�2 	 = 	a�3 	 =2�. For this case, we find from Eq.
�22� that if the sound propagation direction is along the x
axis, the sound speed is �see also Eq. �C10� in Appendix C or
Eq. �D43� in Appendix D�

vs,x = �c + �
n��0

8�c��n2
2 + n3

2�	n� 	2 − 4cn1
2�

	n� 	2�4c + 	n� 	2�3 Fn�
2�V� . �26�

The sound speeds along the y and z axes can be found easily
with permutation argument and the sound speed along a gen-
eral direction is a certain combination of these three speeds.

When there is no periodic potential Var�r��=0, the sound
speed in Eq. �26� is reduced to �c, the sound speed for a
BEC in free space, as expected. We also notice that there is

no first-order correction to the sound speed due to the peri-
odic potential. Most importantly, the analytical result in Eq.
�26� reveals that the lattice component perpendicular to the
sound propagation �generated by the laser beams along the y
and z axes� increases the sound speed while the lattice com-
ponents parallel to the propagation �generated by the laser
beams along the x axis� decreases the sound speed. As a
result of this competition, the sound speed can either in-
crease or decrease with lattice strength. This competition be-
tween the parallel and perpendicular components of the op-
tical lattice certainly also applies to a general periodic
potential if one carefully examines Eq. �22� and interprets
“parallel” and “perpendicular” in a more general sense.

To illustrate this more clearly, we consider a simple case
where the periodic potential is a 1D optical lattice given by
Vex�r��=v cos�y�. There are only two nonvanishing Fourier
coefficients: i.e., F0,1,0�V�=F0,−1,0�V�=v /2. Then according
to Eq. �26�, the speeds of sound along the x, y, and z axes
read, respectively,

vs,x = vs,z = �c�1 +
v2

2�2c +
1

2
3� ,

vs,y = �c�1 −
2cv2

�2c +
1

2
3� , �27�

which show that with increasing the strength of the optical
lattice the sound speed along the y axis, parallel to the peri-
odic lattice, falls while the speeds of sound along both the x
and z axes increase.

Now we study the BEC sound speed in optical lattices in
terms of compressibility and effective mass according to the
second definition of speed of sound: i.e., Eq. �17�. Again we
treat the weak optical lattice as a perturbation. For optical
lattices of all dimensions as described in Eqs. �2�, �7�, and
�8�, we find the chemical potential at k� =0,

� = c −
Dv2

4�2c +
1

2
2 , �28�

and the system energy near k� =0,

E�k�� =
k2

2
−

v2

�1 + 4c�2�4k2 − 1�
, �29�

with k2=�i=x,y,zki
2. So the chemical potential depends on D,

the dimension of the lattice, while the energy E�k� does not.
The compressibility � can be calculated from the chemical
potential � via Eq. �18�, and it is given by

�−1 = c +
Dcv2

�1

2
+ 2c3 . �30�

This shows that the compressibility � tends to decrease with
increasing v as the optical lattice localizes the BECs inside
each well. Moreover, the compressibility � decreases faster
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with v for higher-dimensional lattices. The effective mass m*

can be computed from E�k��, and it is found that

1

m
i
* = �1 −

2v2

�1

2
+ 2c2� , �31�

with i=x ,y ,z. It is clear that the effective mass always in-
creases with the lattice strength v. This is expected as the
increased lattice strength suppresses the tunneling between
neighboring wells and thus increases the effective mass m*.
Interestingly, in contrast to the chemical potential �, the de-
pendence of the effective mass on v is independent of the
lattice dimension D. As the speed of sound is defined as vs

=�1 / ��m*�, the compressibility � and the effective mass m*

influence the sound speed in opposite directions.
Plugging both Eqs. �30� and �31� into Eq. �17�, we find an

analytical expressions for the sound speed of a BEC in an
optical lattice up to the second order of v:

vs,i = �c�1 +
4�D − 1 − 4c�

�4c + 1�3 v2, i = x,y,z . �32�

With simple algebra �see Eq. �E6� in Appendix E�, one
can show that this expression is consistent with the more
general formula in Eq. �26�.

Equation �32� indicates that in one-dimensional �D=1�
optical lattices, the effective mass m* always wins over the
compressibility �, resulting in a decreasing sound speed with
lattice strength. However, in two- or three-dimensional �D
=2,3� optical lattices, the situation is very different. There
exists a critical value of c, the interatomic interaction
strength, beyond which the effective mass m* wins. Other-
wise, the compressibility � has a greater influence on the
speed of sound and the speed of sound increases as the lattice
becomes stronger. The critical values are c=1 /4 for D=2
and c=1 /2 for D=3.

We have discussed the behavior of the speed of sound in
two different languages: one in terms of perpendicular and
parallel components of the periodic potential with Eq. �26�
and the other in terms of effective mass m* and compress-
ibility �. Are these two pictures consistent? The answer is
yes. To see this, we rewrite Eq. �26� as

vs,x = �c + 8�c��
n��0

	n� 	2

�4c + 	n� 	2�3

− �
n��0

n1
2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� . �33�

By comparing it with Eqs. �30� and �31�, it is apparent that
the first term in the curly brackets comes from the compress-
ibility � while the second term results from the effective
mass m*. This observation gives us the following picture: on
the one hand, all components of the periodic potential con-
tribute to the compressibility �, which leads to an enhance-
ment of the sound speed; on the other hand, only the com-
ponent parallel to the sound propagation increases the
effective mass m*, which leads to a suppression of the sound
speed. Since the effective mass m* always wins over � along

the parallel direction, we come to the previous understand-
ing: the perpendicular components increase the sound speed
while the parallel one suppresses it.

B. Tight-binding regime

When the potential wells are sufficiently deep, the con-
densate is well localized at each lattice site and the following
tight-binding model may become adequate to describe the
BEC in an optical lattice �31�:

H = − J �
�n� ,n���

��
n�
*�n�� + �

n��
* �n�� +

U

2 �
n�

	�n�	4, �34�

where the first summation is over all pairs of nearest neigh-
bors. The tunneling constant J, which quantifies the micro-
scopic tunneling rate between adjacent sites, is given by

J = −
1

�2��D � dDr��1

2
��� n� · �� n�+1� + n�Vn�+1� , �35�

with n� being the wave function localized at site n� . The
on-site interaction as given by

U =
c

�2��D � dDr�n�
4 �36�

is a measure of the interaction between atoms at one lattice
site. The ground state of this Hamiltonian is a constant wave
function �n� =1. Its excitation energy is given by ��qx�
=2	sin�qx��	�2JxU, which yield the sound speed via Eq. �16�
along the x axis of the optical lattice:

vs,x = �8�2JxU . �37�

This result is consistent with the sound speed definition in
terms of compressibility � and effective mass m* �24� since

Jx =
1

8�2

m

m
x
* , U � �−1. �38�

In the following, we try to express J and U in terms of c
and v. For a state well localized at each lattice site, we can
regard it as the ground state of the lattice well and describe
the localized state n� with the ground-state wave function of
a harmonic oscillator. This approximation immediately leads
to an estimate of U. We obtain

U = c�4�2v�D/4. �39�

As U��−1, this indicates that the compressibility in the
tight-binding limit is very similar to the weak potential limit:
it depends on the dimensionality of the lattice and decreases
with v in a nonexponential form.

Mathematically, the time-independent Schrödinger equa-
tion for an atom in the cosine potential is a Mathieu equa-
tion. The theory of the Mathieu equation allows us to esti-
mate J along the x axis of the optical lattice, which is given
by �38,39�
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Jx =
4

��
v3/4 exp�− 8�v� . �40�

This result is very different from the weak potential limit,
where the effective mass

mx*

m
= 1

8�2Jx
increases exponentially

with �v. We emphasize that Eq. �40� is explicitly a single-
particle result and only valid for weak interactions �see Fig.
8�. As a result, Jx should dominate the behavior of the speed
sound. Combining Eqs. �39� and �40�, we arrive at

vs,x = 25/2�3/4c1/2�4�2v�D/8v3/8 exp�− 4�v� , �41�

which shows that the speed of sound decreases monotoni-
cally with v in an exponential form in all three dimensions.
The sound speed in the tight-binding limit has a weak depen-
dence on the dimension D of the lattice as D only appears in
the prefactor of the exponential. We emphasize that Eqs. �39�
and �40� are obtained by completely ignoring the interatomic
interaction, so the analytical result of Eq. �41� will become
invalid in the case of a strong interatomic interaction �or
BECs of high density�. After noticing the difficulty to obtain
the analytical result on the boundary where Eq. �41� becomes
invalid, we turn to a numerical effort. Later we shall discuss
in detail how Eq. �41� becomes invalid with the numerical
results on Jx �see Fig. 8�.

IV. NUMERICAL RESULTS

We have so far studied analytically the sound speed of a
BEC in an optical lattice. In this section, we study the sound
speed with numerical methods. Our numerical method al-
lows us to find the sound speed for the whole range of lattice
strength, particularly the intermediate lattice strength for
which no apparent analytical approach is available at present.

A. Numerical methods

As discussed in Sec. II, to compute the sound speed, one
has to first find the ground state of the BEC system or the
Bloch states in the vicinity of k� =0. To find these states nu-
merically, we expand the Bloch states in a Fourier series

�k��r�� = �
m,n,l=−N

N

am,n,le
i�mx+ny+lz�, �42�

where N is the cutoff. We find that N=5 is good enough for
all dimensions. The Fourier coefficients �am,n,l� satisfy the
normalization condition

�
m,n,l=−N

N

	am,n,l	2 = 1. �43�

Note that the Fourier coefficients �am,n,l� can be chosen as
real for our cases. This fact greatly reduces the computation
burden.

The Bloch waves can be numerically obtained by varying
�am,n,l� so that the wave function �k� minimizes the system
energy of Eq. �5�; the accuracy is checked by substituting the
solutions into the Gross-Pitaevskii equation �4�. We use the
standard minimization routine of MATLAB. The accuracy of

the numerical solutions can be checked by substituting the
numerical solutions into the time-independent Gross-
Pitaevskii equation �4�. Once the Bloch states �k��r�� have
been obtained, we can compute the sound speed in two dif-
ferent methods. In one method, we calculate the Bogoliubov
excitations ��q� of the ground state �0�r�� and find the sound
speed of the BEC through Eq. �16�. In the other method, we
can calculate the effective mass m

x
* and compressibility �,

respectively, with Eqs. �6� and �18�. Then the sound speed
can be computed via Eq. �17�. We have calculated the sound
speeds with both methods and the agreement is excellent as
expected. We have reproduced the main results of Ref. �24�
as a test of our numerical methods.

B. Results and discussion

We have computed numerically the sound speeds for all
three dimensions for a wide range of lattice strength v and
interatomic interaction c. The results are plotted in Figs. 1–3,
respectively. Figure 1 displays the sound speed in the one-
dimensional case, which falls monotonically with increasing

FIG. 1. Sound speed for a BEC in a 1D optical lattice via the
strength of the optical lattice. The numerical results are denoted by
the solid lines, analytical results for weak potentials by stars ���,
and analytical tight-binding results by solid squares ���. Sound
speed of vs,x is in units of 2�kL /m, the nonlinear coefficient c
=�n0as /kL

2, and the lattice strength of v is in units of 4�2kL
2 /m.

FIG. 2. Sound speed for a BEC in a 2D optical lattice via the
strength of the optical lattice. The numerical results are denoted by
the solid lines, analytical results for weak potentials by stars ���,
and analytical tight-binding results by solid squares ���. Sound
speed of vs,x is in units of 2�kL /m, the nonlinear coefficient c
=�n0as /kL

2, and the lattice strength of v is in units of 4�2kL
2 /m.
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lattice strength. This is in agreement of previous studies
�23–25�.

The results are different in two and three dimensions. As
shown in Figs. 2 and 3, the relationship between the sound
speed and the lattice strength depends crucially on the
strength of interatomic interaction. In the two-dimensional
case, when the interaction is above the critical value—i.e.,
c�

1
4—the speed of sound also decreases monotonically with

increasing lattice strength �Fig. 2�d��. However, when the
interaction is weak—i.e., c�

1
4—as shown in Figs. 2�a� and

2�b� the sound speed reaches a maximum at an intermediate
strength of optical lattice. Figure 2�c� shows the transition
point between the above two different behaviors, where the
sound speed almost does not change with weak lattice poten-
tials.

In three dimensions, the behavior becomes even richer.
There exists a critical value of the interatomic interaction,
c= 1

2 . When the interaction is smaller than this critical value
�c�

1
2 �, the sound speed first increases and then decreases as

the lattice strength increases �Figs. 3�a�–3�c��. This is similar
to the two-dimensional case and was first noticed by Boers
et al. �30�. However, when the interaction is strong enough—
i.e., c�

1
2—a new pattern is found. As shown in Fig. 3�d�, the

sound speed can even oscillate with the lattice strength. Ac-
cording to our numerical results, the oscillating behavior of
the sound speed does not disappear until the interatomic in-
teraction c=1.

The dependence of sound speeds on the lattice strength v
is largely expected from our analytical results for the two

limiting cases of weak and strong lattices. We have shown
that in the weak lattice limit, the speed of sound can either
increase or decrease with the lattice strength while in the
strong lattice limit the speed of sound always decreases with
increasing lattice strength. Naively, one would expect that
the speed of sound either decreases monotonically with the
lattice strength v or develops a maximum at a certain inter-
mediate value of v. This is exactly what we have seen in
Figs. 1–3 except in Fig. 3�d� where we see two local
maxima.

Our numerical results are compared to our analytical re-
sults. As seen in Figs. 1–3, our numerical results agree very
well with our analytical results �stars ���� in the regime of
weak potentials. For strong lattices, our numerical results
also agree well with the tight-binding results �solid squares
��� in Figs. 1�a�, 2�a�, and 3�a�� for weak interactions. How-
ever, for strong interactions, there exists a large discrepancy
between the tight-binding results and the numerical one. We
shall discuss this in detail later.

To better understand the behavior of the sound speed as a
function of the lattice strength v, we have also computed
numerically the effective mass m

x
* and the compressibility �

and the results are plotted in Figs. 4–6. It is clear from these
figures that the compressibility � has different dependences
on v in different dimensions. This agrees with our analytical
results in the last section. However, we notice that the in-
creasing rates of �−1 with v are quite close in all dimensions.

The situation is different for the effective mass m
x
*. In the

last section, we have shown that the effective mass m
x
* has

the same dependence on v �see Eq. �31�� in all dimensions.
However, it is true only in the limit of weak lattices. As seen
in the right columns of Figs. 4–6, the effective mass m

x
*, as a

function of v, behaves very differently in different dimen-
sions. In particular, the increasing rate of m

x
* with v in one

dimension is orders of magnitude larger than the increasing
rate in three dimensions. The two-dimensional case is right
in between. Since the sound speed is the result of the com-
petition between m

x
* and �, the relatively small increasing

FIG. 3. Sound speed for a BEC in a 3D optical lattice via the
strength of the optical lattice. The numerical results are denoted by
the solid lines, analytical results for weak potentials by stars ���,
and analytical tight-binding results by solid squares ��� curves. For
clarity, the analytical results for weak potentials are compared to
numerical result in the insets for c=0.3, c=0.5, and c=0.7. Sound
speed of vs,x is in units of 2�kL /m, the nonlinear coefficient c
=�n0as /kL

2, and the lattice strength of v is in units of 4�2kL
2 /m.

FIG. 4. Inverse compressibility �−1 and effective mass m
x
* for a

BEC in a 1D optical lattice via the strength of the optical lattice.
Based on Eq. �38�, U is equal to �−1 in the tight-binding limit. The
nonlinear coefficient c=�n0as /kL

2, inverse compressibility �−1 and
U are in units of 4�2kL

2 /m, and the lattice strength v is in units of
4�2kL

2 /m.
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rate of m
x
* with v allows the sound speed to oscillate with v

in 3D.
In order to understand the interplay between the effects of

the lattice dimensionality D and the interaction c on the ef-
fective mass, we plot it Fig. 7. As shown in Fig. 7�a�, the
lattice dimensionality D has the relative small effect on the
effective mass when the interaction is small �c=0.01�; how-
ever, the effective mass becomes sensitive to the dimension-
ality D with an increase of the interaction as shown in Fig.
7�b�.

We have already mentioned that the analytical tight-
binding result, Eq. �41�, works only for the case of a weak
interaction and large lattice potential and does not agree well
with the numerical results in the case of a strong interaction.

Here we explain it with the help of our numerical results of
the tunneling rate Jx in Fig. 8, which is computed via Eq.
�38�. It is clear from Fig. 8 that the agreement between the
tight-binding result, Eq. �40�, and our numerical results gets
worse from 1D to 3D. For example, at v=1.5, the agreement
is quite good for c=0.01,0.2,0.4 in 1D while the agreement
is only good for c=0.01 and c=0.1 in 2D and for c=0.01 in
3D. This shows that the interaction can affect Jx greatly in
2D and 3D. This influence is transferred to the sound speed
via Eq. �37�. This explains why the tight-binding result, Eq.
�41�, does not agree well with the numerical results in the
case of strong interaction since the interaction is ignored in
deriving Eq. �41�.

We point out here that our study has been done with the
Gross-Pitaevskii equation. In this mean-field theory, all

FIG. 5. Inverse compressibility �−1 and effective mass m
x
* for a

BEC in a 2D optical lattice via the strength of the optical lattice.
Based on Eq. �38�, U is equal to �−1 in the tight-binding limit. The
nonlinear coefficient c=�n0as /kL

2, inverse compressibility �−1 and
U are in units of 4�2kL

2 /m, and the lattice strength v is in units of
4�2kL

2 /m.

FIG. 6. Inverse compressibility �−1 and effective mass m
x
* for a

BEC in a 3D optical lattice via the strength of the optical lattice.
Based on Eq. �38�, U is equal to �−1 in the tight-binding limit. The
nonlinear coefficient c=�n0as /kL

2, inverse compressibility �−1 and
U are in units of 4�2kL

2 /m, and the lattice strength of v is in units of
4�2kL

2 /m.

FIG. 7. Interplay between the effects of lattice dimensions and
interactions on the effective mass: �a� c=0.01 and �b� c=0.3. The
nonlinear coefficient c=�n0as /kL

2 and the lattice strength of v is in
units of 4�2kL

2 /m.

FIG. 8. Tunneling rate Jx via strength of optical lattice: �a� one-
dimensional case, �b� two-dimensional case, and �c� three-
dimensional case. The nonlinear coefficient c=�n0as /kL

2, the tun-
neling rate Jx is in units of 4�2kL

2 /m, and the lattice strength of v is
in units of 4�2kL

2 /m.
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quantum fluctuations and temperature effects are ignored. To
study the effects of temperature or fluctuations, in particular,
near the transition point of superfluid and Mott insulator, one
has to use other theories �40,41�.

V. EXPERIMENTS

The speed of sound of a BEC in an optical lattice may be
measured with a similar technique as was used in Ref. �13� to
measure the sound speed of a BEC in a trap. Some compli-
cation is expected due to the periodic modulation of the BEC
density. Another possible method is to employ Bragg spec-
troscopy �22,42,43� to the excitation spectrum. The speed of
sound can be extracted from the slope of the linear part of the
excitation spectrum.

In typical experiments to date, the relevant parameters are
as follows: for a BEC in a three-dimensional optical lattice
�11�, the atom occupancy per lattice is of the order of �ni�
�1–3, n0=1.3–3.9�1019 m−3, kL=2� /�L=7.37�106 m−1,
and as=5.4 nm; for a BEC in a quasi-two-dimensional opti-
cal lattice �44�, the atom occupancy per lattice can reach
�ni��170, n0=3.6�1020 m−3, kL=2� /�L=7.37�106 m−1,
and as=5.4 nm; for a BEC in a quasi-one dimensional opti-
cal lattice �45�, �ni��1000, n0=2.8�1020 m−3, kL=2� /�L
=7.9�106 m−1, and as=5.4 nm. These parameters corre-
spond to c=0.08 for 1D optical lattices, c=0.11 for 2D op-
tical lattices, and c=0.004–0.012 for 3D optical lattices. The
depth of the optical lattice V0 can be changed from 0ER to
32ER �11�; it means that our v can be changed from 0 and 2.
To our knowledge, the highest atomic density without lattice
is n0=3�1021 m−3 for sodium �46�. For this high density, we
have c=0.22 with kL=1.07�107 m−1 �4�. However, this is
rather idealistic. The other possible way to increase c is to
tune the scattering length as with Feshbach resonance
�47,48�.

VI. CONCLUSIONS

We have studied the speed of sound, compressibility, and
effective mass of a Bose-Einstein condensate in an optical
lattice both analytically and numerically. Special attention
has been paid to the effect of the depth of the optical lattice,
v; the interatomic interaction c; and the dimensionality D on
the sound speed. Our investigation shows that the sound
speed depends strongly on the strength of the lattice. In the
one-dimensional case, the speed of sound falls monotoni-
cally with increasing lattice strength. The dependence be-
comes much richer in two and three dimensions. In the two-
dimensional case, when the interaction is weak, the sound
speed first increases and then decreases as the lattice strength
increases. For the three-dimensional case, the sound speed
can even oscillate with the lattice strength. These rich behav-
iors can be understood in terms of competition between com-
pressibility and effective mass. Our analytical results at the
limit of weak lattices also offer an interesting perspective to
the understanding: they show that the lattice component per-
pendicular to the sound propagation decreases the sound
speed while the lattice component parallel to the propagation
increases the sound speed.
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APPENDIX A: PRELIMINARY NOTATIONS

Suppose f�r�� to be a periodic function with periodicity of

R� , given by

f�r�� = f�r� + R� � , �A1�

with

R� = m1a�1 + m2a�2 + m3a�3, �A2�

where r� is the position vector, a�1, a�2, and a�3 are any three
vectors not all in the same plane, and m1, m2, and m3 range
through all integral values. Corresponding to a� i’s, there exist

a set of reciprocal vectors b� j’s such that

a� i · b� j = 2�
ij . �A3�

We can expand the periodic function f�r�� as its Fourier co-
efficients Fn��f� as defined by

f�r�� = �
n�

Fn��f�exp�in� · r�� , �A4�

with

Fn��V� =
1

�
�

cell

dr� f�r��exp�− in� · r�� �A5�

and

n� = n1b�1 + n2b�2 + n3b�3, �A6�

where the nj are integers. In the integration, � is the volume
of the primitive cell and the integration is over a primitive
cell.

APPENDIX B: SOLUTIONS OF THE GROSS-PITAEVSKII
EQUATION IN THE WEAK POTENTIAL LIMIT

The time-independent Gross-Pitaevskii �GP� equation in
the three-dimensional case can be written as

−
1

2
�2��r�� + c	��r��	2��r�� + Var�r����r�� = ���r�� , �B1�

where Var�r�� is the periodic potential with periodicity R� :

Var�r�� = Var�r� + R� � . �B2�

The Bloch-wave solution of the GP equation �B1� reads

��r�� = �k��r��eik�·r�, �B3�

where k� is the Bloch wave number and �k��r�� is a periodic
function with the same periodicity of Eq. �B2�. Substituting
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Eq. �B3� into Eq. �B1�, we have the following equation for
each Bloch wave state �k��r��:

−
1

2
��� + ik��2�k��r�� + c	�k��r��	2�k��r�� + Var�r���k��r�� = ��k���k��r�� .

�B4�

The set of eigenvalues ��k�� then forms Bloch bands.
Besides the GP equation �B1�, the Bloch wave function is

also subject to the normalization condition given by

1

�
�

cell

dr�	�	2 = 1, �B5�

which is equivalent to

F0��	�	2� = 1. �B6�

For convenience, we have dropped the suffix k� and the co-
ordinate vector r� in �k��r��.

Expanding � in terms of the potential strength as

� = ��0� + ��1� + ��2� + ¯ , �B7�

we get the zeroth-, first-, and second-order forms of Eq. �B6�,
respectively:

F0��	�	2��0� = �
n�

	Fn����0��	2 = 1, �B8�

F0��	�	2��1� = �
n�

�Fn����0��F
n�
*���1�� + Fn����1��F

n�
*���0��� = 0,

�B9�

F0��	�	2��2� = �
n�

�Fn����0��F
n�
*���2�� + 	Fn����1��	2

+ Fn����2��F
n�
*���0��� = 0. �B10�

There is still an arbitrary phase in the above wave functions,
which satisfy both the GP equation and the normalization
condition. Therefore, we may impose a third condition

1

�
� dr�	�	2 � R , �B11�

so that the Bloch states can be uniquely determined.
Before solving the GP equation �B1�, we have to set forth

another two specifications. First, we are only concerned with
Bloch states at k� =0. In this case, we rewrite Eq. �B4� as
follows:

−
1

2
�2� + c	�	2� + Var�r��� = �� , �B12�

where we dropped the suffix 0� and the coordinate vector r� in
�0��r�� for convenience. Expanding � and � in terms of the
potential strength, we get the zeroth-, first-, and second-order
forms of Eq. �B12�, respectively:

−
1

2
�2��0� + c	��0�	2��0� = ��0���0�, �B13�

−
1

2
�2��1� + c�2	��0�	2��1� + ��0�2

��1�*� + Var�r����0�

= ��0���1� + ��1���0�, �B14�

−
1

2
�2��2� + c�2	��0�	2��2� + ��0�2

��2�* + 2��0�	��1�	2

+ ��0�*��1�2
� + Var�r����1� = ��0���2� + ��1���1� + ��2���0�.

�B15�

Second, we are only concerned with the cases in which the
external potential Var�r�� is symmetric in each cell, or in other
words, Var�r�� is an even function. Combining it with the
condition that Var�r�� be a real function, we immediately have

Fn��V� = F−n��V� � R . �B16�

In the following, we will solve the GP equation for obtaining
the normalized Bloch state at k� =0.

1. Zeroth-order correction of the GP equation

From Eq. �B13�, we get the zeroth-order wave function
and chemical potential, respectively,

��0� = 1, ��0� = c , �B17�

which automatically meet the normalization condition �B8�.

2. First-order correction of the GP equation

Substituting Eq. �B17� into Eq. �B9�, we have

F0����1�� + F
0�
*���1�� = 0. �B18�

From the phase condition �B11�, we know that F0����1�� is a
real number, and therefore

F0����1�� = 0. �B19�

Substituting Eq. �B17� into Eq. �B14�, we have

1

2
	n� 	2Fn����1�� + c�Fn����1�� + Fn����1�*�� + Fn��V� = ��1�
n� ·0� .

�B20�

Plugging Eq. �B19� into Eq. �B20� and letting n� =0, we get
the first-order correction of the chemical potential:

��1� = F0��V� . �B21�

Taking complex conjugates on both sides of Eq. �B20� and
replacing −n� with n� , we obtain

1

2
	n� 	2Fn����1�*� + c�Fn����1�� + Fn����1�*�� + Fn��V� = ��1�
n� ·0� .

�B22�

The unique solution of Eqs. �B20� and �B22� in the case of
n� �0 reads
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Fn����1�� = Fn����1�*� = −
Fn��V�

1

2
	n� 	2 + 2c

, n� � 0� . �B23�

From Eqs. �B19� and �B23�, we know

Fn����1�� = F−n����1�� � R , �B24�

which means that ��1��r�� is a real even function.

3. Second-order correction of the GP equation

Plugging Eqs. �B17� and �B19� into Eq. �B10�, we obtain

F0����2�� + F0����2��* + �
n�

Fn����1��2 = 0. �B25�

Plugging Eqs. �B17� and �B19� into Eq. �B15�, we obtain

1

2
	n� 	2Fn����2�� + c�Fn����2�� + Fn����2�*� + 3Fn����1�2

��

+ Fn��Var�
�1�� = ��1�Fn����1�� + ��2�
n� ·0� . �B26�

In the case of n� =0, we have

c�F0����2�� + F0����2�*� + 3F0����1�2
�� + F0��V��1��

= ��1�F0����1�� + ��2�
n� ·0� . �B27�

Plugging Eqs. �B21�, �B23�, and �B25� into Eq. �B27�, we
obtain the second-order correction of the chemical potential:

��2� = − �
n��0�

1

2
	n� 	2

�1

2
	n� 	2 + 2c2Fn��V�2. �B28�

To complete the calculation of the sound speed, we also
need to calculate the system energy near k� =0. This can be
obtained in terms of the effective potential c	�	2+Var�r��−�
seen by each atom. We view our system as a noninteracting
gas in the effective potential:

Vef f�r�� =
	n� 	2

	n� 	2 + 4c
V�r�� . �B29�

Since the correction to the system energy is second order in
the potential strength, it is sufficient to consider the first-
order correction of the Bloch state; there is no need of cal-
culating the second-order correction of the Bloch state.
Based on Eq. �B29�, we can easily obtain the system energy
E�k�� near k� =0, up to the second-order correction:

E�k�� =
	k�	2

2
− �

n��0

	n� 	4

�	n� 	2 + 4c�2

1

2
�n� + k��2 −

1

2
	k�	2

Fn�
2�V� . �B30�

APPENDIX C: ANALYTICAL EXPRESSION OF SOUND
SPEED BASED ON EQ. (17) IN THE WEAK

POTENTIAL LIMIT

The aim of this section is to calculate the compressibility
� and the effective mass m* as a function of the interatomic
interaction c and of the depth of the arbitrary periodic poten-
tial Var�r��. Using these quantities, we will calculate the ve-
locity of sound.

Compressibility � and effective mass m*

Plugging Eqs. �B17�, �B21�, and �B28� into Eq. �18�, we
obtain the analytical expression of compressibility � in the
weak potential limit:

�−1 = c�1 − �
n��0

16	n� 	2

�	n� 	2 + 4c�3Fn�
2�V� . �C1�

To calculate the sound speed, we also need calculating the
effective mass m*. Substituting Eq. �B30� into Eq. �6�, we
obtain the analytical expression of the effective mass along a
given direction indicated by a unit vector r̂:

1

m*
= 1 − �

n��0

16	n� · r̂	2

	n� 	2�	n� 	2 + 4c�2Fn�
2�V� . �C2�

We also find that the effective masses along each axis x�, y�,
and z� labeled by m

x
*, m

y
*, and m

z
* read

1

m
x
* = 1 − �

n��0

16	n� · x�	2

	n� 	2�	n� 	2 + 4c�2Fn�
2�V� , �C3�

1

m
y
* = 1 − �

n��0

16	n� · y�	2

	n� 	2�	n� 	2 + 4c�2Fn�
2�V� , �C4�

and

1

m
z
* = 1 − �

n��0

16	n� · z�	2

	n� 	2�	n� 	2 + 4c�2Fn�
2�V� . �C5�

Plugging Eqs. �C2� and �C1� into Eq. �17�, we arrive at
the analytical expression of sound speed labeled by vs along
a given direction r̂,

vs = �c + 8�c��
n��0

	n� 	2

�4c + 	n� 	2�3 − �
n��0

	n� · r̂	2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� .

�C6�

Plugging Eqs. �C3�–�C5� and �C1�, into Eq. �17�, we also
obtain the analytical expressions of sound speed along each
axis x�, y�, and z�, labeled by vsx, vsy, and vsz:
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vs,x = �c + 8�c��
n��0

	n� 	2

�4c + 	n� 	2�3

− �
n��0

	n� · x�	2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� , �C7�

vs,y = �c + 8�c��
n��0

	n� 	2

�4c + 	n� 	2�3

− �
n��0

	n� · y�	2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� , �C8�

and

vs,z = �c + 8�c��
n��0

	n� 	2

�4c + 	n� 	2�3

− �
n��0

	n� · z�	2

	n� 	2�4c + 	n� 	2�2
Fn�
2�V� . �C9�

In the following, we consider a special case—i.e., where
a�1, a�2, and a�3 are chosen along x�, y�, and z�, respectively; we
also suppose 	a�1	= 	a�2	= 	a�3	=2�, without loss of generality.
In this case, the sound speed of Eqs. �C7�–�C9� can be sim-
plified into

vs,x = �c + 8�c��
n��0

n�2

�4c + n�2�3 − �
n��0

n1
2

n�2�4c + n�2�2
Fn�
2�V� ,

�C10�

vs,y = �c + 8�c��
n��0

n�2

�4c + n�2�3 − �
n��0

n2
2

n�2�4c + n�2�2
Fn�
2�V� ,

�C11�

and

vs,z = �c + 8�c��
n��0

n�2

�4c + n�2�3 − �
n��0

n3
2

n�2�4c + n�2�2
Fn�
2�V� .

�C12�

APPENDIX D: ANALYTICAL EXPRESSION OF SOUND
SPEED BASED ON EQ. (16) IN THE WEAK

POTENTIAL LIMIT

As shown in Sec. II B, there are two equivalent ways to
calculate the velocity of sound; one is based on Eq. �16�, and
the other comes from Eq. �17�. The aim of this section is to
calculate the analytical expression of sound speed based on
Eq. �16� from the another angle by directly solving excitation
energy ��q�.

1. Matrices P, Q, S, and T

According to the Bogoliubov theory, the excitation energy
��q� of the BEC in the Bloch state at k� =0 can be obtained by
solving the eigenvalue problem


zM�q���u

v
 = ��q��u

v
 , �D1�

with

M = �L�k� + q�� c�k�
2

c�
k�
*2

L�− k� + q��
 �D2�

and

�z = �1 0

0 − 1
 , �D3�

where L�p�� is defined as

L�q�� = −
1

2
��� + iq��2 + Var�r�� − � + 2c	�k�	2. �D4�

By a similarity transformation, we can transform �zM into a
numerical matrix P without changing the eigenvalues. The
new matrix P can be represented in a block form

P = �Tm� ·n�����, �D5�

where each block Tm� ·n� is actual a 2�2 matrix and m� and n�
take values ranging from �−� ,−� ,−�� to �+� , +� , +��. For
convenience, we abbreviate the diagonal blocks Tn� ·n� · in Eq.
�D5� as Sn�, and consequently Tm� ·n� denotes solely those non-
diagonal �m� �n�� blocks.

For we are only concerned with the case of k� =0, �zM can
be simplified into

�zM = � L�q�� c�2

− c�*2 − L�q��
 . �D6�

In this case, we have

Sn� = � an� bn�

− b
n�
* − an�

, Tm� ·n� = � cm� ·n� dm� ·n�

− d
m� ·n�
* − cm� ·n�

 , �D7�

with an�, bn�, cm� ·n� and dm� ·n� determined by

an� =
1

2
�n� + q��2 + F0�V� − � + 2cF0�	�	2� , �D8�

bn� = cF0��2� , �D9�

cm� ·n� = Fm� −n��V� + 2cFm� −n��	�	2� , �D10�

dm� ·n� = cFm� −n���2� . �D11�

We define the matrix Q as follows:

Q = P − �I , �D12�

where � represents the lowest elementary excitation. Conse-
quently, we have

det Q = 0. �D13�

Now, we compute the elements an�, bn�, cm� ·n�, and dm� ·n� from
Eqs. �D8�–�D11� as follows:
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an�
�0� =

1

2
�n� + q��2 + c, bn�

�0� = c , �D14�

cm� ·n�
�0� = 0, dm� ·n�

�0� = 0, �D15�

an�
�1� = 0, bn�

�1� = 0, �D16�

cm� ·n�
�1� =

1

2
�m� − n��2 − 2c

1

2
�m� − n��2 + 2c

Fm� −n��V� , �D17�

dm� ·n�
�1� = −

2c

1

2
�m� − n��2 + 2c

Fm� −n��V� , �D18�

an�
�2� = �

n��0�

1

2
n�2

�1

2
n�2 + 2c2Fn��V�2, �D19�

bn�
�2� = 0. �D20�

For all these quantities real, we may drop the asterisks ��� in
Eq. �D7�.

2. Lowest elementary excitation in the weak potential limit

We expand the matrix Q and � in terms of v as follows:

Q = Q�0� + Q�1� + Q�2� + ¯ , �D21�

� = ��0� + ��1� + ��2� + ¯ . �D22�

The aim of this subsection is to calculate ��0�, ��1�, and ��2�

by expanding Eq. �D13� into its zeroth-, first-, and second-
order forms.

a. Zeroth-order approximation of ε

The zeroth-order form of Eq. �D13� is

�det Q��0� = det Q�0� = det�P�0� − ��0�I� = 0. �D23�

From Eqs. �D15�, we know that all Tm� ·n�
�0� are zero matrices,

and therefore the matrix P�0� is block diagonal as represented
in Eq. �D5�. Consequently, the eigenvalues of P�0� are the
collection of the eigenvalues of each Sn�

�0�. The zeroth-order
approximation of � is hence the positive eigenvalue of S0

�0�:

�a
0�
�0�

− ��0� b
0�
�0�

− b
0�
�0�

− a
0�
�0�

− ��0� � = 0. �D24�

The positive solution of Eq. �D24� reads

��0� =�1

4
q�4 + cq�2. �D25�

With the value of ��0�, we calculate the determinant of each
diagonal block of the matrix Q�0�:

det�Sn�
�0� − ��0�I� = �1

2
q�2 + c2

− �1

2
�n� + q��2 + c2

,

�D26�

which are denoted by Rn� for convenience,

Rn� = �1

2
q�2 + c2

− �1

2
�n� + q��2 + c2

. �D27�

This result will be useful in the following sections.

b. First-order correction of ε

We can conclude that the first-order correction of � van-
ishes as

��1� = 0. �D28�

c. Second-order correction of ε

The second-order form of Eq. �D13� reads

�det Q��2� = �
ij
� �	Q	

�Qij
�0�

Qij
�2� +

1

2�
ijkl

� �2	Q	
�Qij�Qkl

�0�

Qij
�1�Qkl

�1�

= 0. �D29�

Here we introduce the “second cofactor matrix” of Q, which

is denoted by Q5 and whose elements are defined as

Q5 ij,kl =
�2	Q	

�Qij�Qkl
. �D30�

By this notation, we reduce Eq. �D29� to

�
ij

Q̃ij
�0�Qij

�2� +
1

2�
ijkl

Q5 ij,kl
�0� Qij

�1�Qkl
�1� = 0. �D31�

We start by computing the first term on the left-hand side
of Eq. �D31�. Keeping only the nonvanishing terms and not-
ing that R0� =0, we have

�
ij

Q̃ij
�0�Qij

�2� = �
n�

�2��0���2� − 2an�
�0�an�

�2�� �
m� �n�

Rm�

= �2��0���2� − 2a
0�
�0�

a
0�
�2�� �

m� �0�
Rm� . �D32�

Then we proceed to compute the second term on the left-
hand side of Eq. �D31�. It should be noted that any Qij is one
of the elements of the matrix Um� ·n�, which is defined as

Um� ·n� =�
am� − � bm� cm� ·n� dm� ·n�

− bm� − am� − � − dm� ·n� − cm� ·n�

cn� ·m� dn� ·m� an� − � bn�

− dn� ·m� − cn� ·m� − bn� − an� − �
� .

�D33�
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The second term on the left-hand side of Eq. �D31� could
be computed in a routine way by computing the second co-
factor matrix of Um� ·n�. However, we have found a much more
convenient method to compute this term which is shown as
follows. Since we have

am�
�1� − ��1� = − am�

�1� − ��1� = bm�
�1� = − bm�

�1� = 0, �D34�

the only nonvanishing Qij
�1� are those in Tm� ·n�

�1� , or more specifi-
cally, cm� ·n�

�1� , −cm� ·n�
�1� , dm� ·n�

�1� , and −dm� ·n�
�1� . We further assert that in

order to get a nonvanishing Q5 ij,kl
�0� , the corresponding Qij and

Qkl must be in the same Um� ·n�. This assertion can be con-
firmed by some routine proof which we shall not elaborate
here. From the above assertion, we obtain the expression

�
ijkl

Q5 ij,kl
�0� Qij

�1�Qkl
�1� = �

m� ,n�

m� �n�

�
ijkl=1

4

�U5 m� ·n��ij,kl
�0� �Um� ·n��ij

�1�

��Um� ·n��kl
�1� �

k��m� ,n�

Rk� . �D35�

Keeping only the second-order correction terms, we have

�
ijkl=1

4

�U5 m� ·n��ij,kl
�0� �Um� ·n��ij

�1��Um� ·n��kl
�1�

= − 2��0�2
cm� ·n�

�1� cn� ·m�
�1� − 2am�

�0�an�
�0�cm� ·n�

�1� cn� ·m�
�1� − 2bm�

�0�bn�
�0�cm� ·n�

�1� cn� ·m�
�1�

+ 2an�
�0�bm�

�0�cn� ·m�
�1� dm� ·n�

�1� + 2am�
�0�bn�

�0�cn� ·m�
�1� dm� ·n�

�1�

+ 2an�
�0�bm�

�0�cm� ·n�
�1� dn� ·m�

�1� + 2am�
�0�bn�

�0�cm� ·n�
�1� dn� ·m�

�1� + 2��0�2
dm� ·n�

�1� dn� ·m�
�1�

− 2am�
�0�an�

�0�dm� ·n�
�1� dn� ·m�

�1� − 2bm�
�0�bn�

�0�dm� ·n�
�1� dn� ·m�

�1� , �D36�

which is denoted by Wm� ·n� for convenience. Since both cm� ·n�
�1�

and dm� ·n�
�1� are symmetric in m� and n� , the same is true for Wm� ·n�:

Wm� ·n� = Wn� ·m� . �D37�

Plugging Eq. �D36� into Eq. �D35� and noting that R0�

=0, we obtain

�
ijkl

Q5 ij,kl
�0� Qij

�1�Qkl
�1� = 2�

n��0�

Wn� ·0�

Rn�
�

m� �0�
Rn� . �D38�

Plugging Eqs. �D32� and �D38� into Eq. �D31�, we have

�2��0���2� − 2a
0�
�0�

a
0�
�2�� �

m� �0�
Rm� + �

n��0�

Wn� ·0�

Rn�
�

m� �0�
Rm� = 0,

�D39�

from which we finally arrive at the value of ��2�:

��2� =
1

��0� �
n��0� �a

0�
�0�

1

2
	n� 	2

�1

2
	n� 	2 + 2c2Fn��V�2 −

1

2

Wn� ·0�

Rn� � .

�D40�

3. Speed of sound in the weak potential limit

The speed of sound along any given direction r̂ in a BEC
is defined as

vn̂ = 	�� q���q��	q�→0�+. �D41�

Let us consider a special case—i.e., where a�1, a�2, and a�3 are
chosen along each axis of reference system, x�, y�, and z�, re-
spectively; and without loss of generality, we suppose the
periodicity of the periodic potential along each axis to be 2�.
We are particularly interested in the speed of sound along
one of the three axes—for example, the x-axis:

ms,x = � ��

�qx
�

q�→0+
. �D42�

Plugging Eqs. �D25�, �D28�, and �D40�, into Eq. �D42�, we
finally obtain the analytical expression of the sound speed
along each axis:

vs,x = �c + �
n��0

8�c��n2
2 + n3

2�	n� 	2 − 4cn1
2�

	n� 	2�4c + 	n� 	2�3 Fn�
2�V� ,

�D43�

vs,y = �c + �
n��0

8�c��n1
2 + n3

2�	n� 	2 − 4cn2
2�

	n� 	2�4c + 	n� 	2�3 Fn�
2�V� ,

�D44�

and

vs,z = �c + �
n��0

8�c��n1
2 + n2

2�	n� 	2 − 4cn3
2�

	n� 	2�4c + 	n� 	2�3 Fn�
2�V� .

�D45�

It can be easily proved that Eqs. �D43�–�D45� can be de-
duced from Eqs. �C10�–�C12�.

APPENDIX E: A SPECIAL EXAMPLE

Suppose that the arbitrary potential of Var�r�� is chosen to
be the special form of Eq. �2�:

Vlatt�r�� = v�cos x + cos y + cos z� . �E1�

In this case, there are only six nonvanishing Fourier coeffi-
cients

Fn��V� =
v
2

�
n� ,��1,0,0� + 
n� ,�0,�1,0� + 
n� ,�0,0,�1�� . �E2�

Submitting Eq. �E2� into Eq. �D43�, we have

vs,x = �c�1 +
8�1 − 2c�
�4c + 1�3 v2, for D = 3. �E3�
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With similar calculations, we can also obtain the analytic
expressions of sound speed in the optical lattices of Eqs. �7�
and �8�, respectively:

vs,i = �c�1 +
16c

�4c + 1�3v2, for D = 1, �E4�

vs,i = �c�1 +
8�1 − 4c�
�4c + 1�3 v2, for D = 2, �E5�

with i=x ,y ,x. Combining Eqs. �E3�, �E5�, and �E5� together,
we arrive at

vs,i = �c�1 +
4�D − 1 − 4c�

�4c + 1�3 v2, i = x,y,z . �E6�
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