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By investigating the nature of the first-order magnetostructural phase transition, we point out the
origin of large overestimation of magnetic entropy changes calculated by directly applying the
Maxwell relation. Furthermore, if the mass variations in ferromagnetic and paramagnetic phases on
temperature are taken into consideration in two-phase region, taking MnAsCx, �Mn, Al�As, and
Mn0.994Fe0.004As compounds as example, based on the modified Maxwell relation, the large
overestimation and discrepancy of magnetic entropy changes disappear. The magnetic entropy
changes are equivalent with the values by Clausius–Claperyon equation, indicating the validity of
this modified approach. © 2010 American Institute of Physics. �doi:10.1063/1.3446843�

Recently, for the purpose of reducing the greenhouse
gases emissions, people are motivated to find magnetic ma-
terials with a large ambient magnetic entropy change ��SM�,
which is based on the magnetocaloric effect �MCE�.1–7 Since
the discovery of Gd5Si2Ge2-type compounds with giant
MCE,1 magnetic materials with the first-order magnetostruc-
tural phase transition �FOMPT� have attracted much atten-
tions. Not soon later, arguments on both the nominal giant
�SM and the validity of the Maxwell relation in FOMPT also
appeared.2–5 Generally, the Maxwell relation is written as
follows:
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Here, �T=Ti+1−Ti .Mi+1 and Mi are the magnetization mea-
sured at two temperatures Ti+1 and Ti. Using Eq. �1�, 0.3%
Fe-doped MnAs system underwent a FOMPT and showed a
“colossal” �SM as large as 350 J kg−1 K−1 at 310 K for a
field change of 5 T, which is far above any other results
reported up to date,7 triggering great disputes on the validity
of Eq. �1� on the calculation of �SM for FOMPT.8,9 On the
other hand, Giguère et al.2 and Balli et al.9 claimed that the
following Clausius–Claperyon �CC� equation:

�SM�T,B� = − �M
dHc

dT
, �2�

is more convincible in the calculation of FOMPT’s �SM,
instead of Eq. �1�. Here, �M is the difference of magnetiza-
tion between low- and high-field phases. Hc is the critical
field which induces the metamagnetic phase. But, given that
the thermodynamic potential can be an exact differential as
well as considering FOMPT as an instantaneous transition,
Sun et al.4 proved the equivalence of Eq. �1� with Eq. �2�.
This makes the problem even further complicated. If Eq. �1�
and Eq. �2� are equivalent in the FOMPT’s �SM calculation,

why in real calculation, the values by Eq. �1� are sometimes
significantly higher than those by CC equation. Therefore,
we are motivated to figure out the origin of such overestima-
tion of the so-called “colossal” �SM and the spurious “spike”
on �SM −T curves obtained by direct application of Eq. �1�.
In this work, we will show that such significant discrepancy
is due to the improper application of Eq. �1�. By considering
the temperature-dependent mass variation in ferromagnetic
�FM� and paramagnetic �PM� phases, large discrepancy dis-
appears and the obtained results are consistent well with
those obtained by CC equation.

Generally, for a second-order phase transition or a FO-
MPT in a single-phase region between temperatures T1 and
T2, as shown in Fig. 1�a�, the �SM is proportional to the
difference of the magnetization work ��1�, which numeri-
cally equals to the area enclosed between two isothermal
magnetization curves �Fig. 1�a��. Direct application of the
Maxwell relation �Eq. �1�� for calculating FOMPT’s �SM is
valid in this temperature region, based on a fact that the mass
of FM phase maintains constant. But this crucial condition is
always neglected in the �SM calculation by the Maxwell
relation in the two-phase region.

With increasing temperature to the two-phase region �for
example, T3 and T4 as shown in Figs. 1�b� and 1�c��, the
situation becomes complicated. The initial step indicates the
saturation of FM phase. At higher field, a magnetization
jump indicates a field-induced PM to FM phase transition
accompanied with structural transition. Due to the coexist-
ence of FM and PM phases, at temperature T without applied
field, the ratios �f�T� and p�T�� for FM and PM phases can be
estimated as follows:

f�T� =
Mf�T�
Mt�T�

and p�T� = 1 − f�T� . �3�

Here, as seen in Fig. 1�c�, Mf is the magnetization contrib-
uted only by FM phase in the mixture obtained by extrapo-
lation. Mt is the saturation magnetization at high field when
the PM phase is totally transformed into FM phase. If Max-
well relation was directly applied, based on Eq. �1�, the �SM
would be written as follows:
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�SM�T,�B� =
��4 + �5� − ��2 + �3�
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. �4�

Here, as shown in Figs. 1�b� and 1�c�, �4 and �5, are the
respective magnetization work of the FM and PM phases at
T4. �2 and �3 are the counterparts at T3. However, it should
be also noted that magnetization work �4 at T4 is contributed
from the FM phase, which is f�T4� of total working amount.
But magnetization work �2 at T3 is contributed from FM
phase which is f�T3� of total working amount. It indicates
that the magnetization works are contributed from different
mass of working materials, which is temperature-dependent.
Similar situation would be for PM phase. Direct subtraction
between ��4+�5� and ��3+�2� would contain not only the
contribution of moment change due to temperature but also
the amount change due to temperature. Such subtraction is
meaningless and unreasonable, leading to the “colossal”
MCE and the so-called “spike.” It is the origin of large dis-
crepancy between the �SM values obtained directly by Max-
well relation �Eq. �4�� and by the CC equation �Eq. �2��.

In order to obtain reasonable �SM by Maxwell relation,
before subtracting the magnetization works of different tem-
perature, we have to compare the magnetization works con-
tributed from same amount of FM phases and tick out the
unreasonable contribution due to the mass change. For ex-
ample, at temperature T4, the modified Maxwell relation
should be as follows:

�S�T4,�B� =
1
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��4 −
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f�T3�
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p�T3�
p�T4�� , �5�

here �2 / f�T3� is the imaginary magnetization work at tem-
perature T3 if the working material is entirely FM phase.
Considering that at T4 FM phase is only f�T4� of total work-
ing material, �2f�T4� / f�T3� is the imaginary magnetization
work at temperature T4. In this way, both �4 and
�2f�T4� / f�T3� could be compared based on the same quantity
of FM phase. The item in the first parenthesis is the real
magnetization work subtraction only contributed by FM’s
moment changes without contribution due to the mass
changes. The second one is the PM’s counterpart. Compared
with the original Maxwell relation, the temperature-
dependent mass variation in two-phase region is considered
in Eq. �5�. If the working material is homogenous during
phase transition, f�T� would be temperature-independent
and Eq. �5� would be same with original Maxwell relation
�Eq. �4��.

Since we have demonstrated the origin for the large dis-
crepancy in �SM estimation and indicated the proper way
of calculating the MCE by Eq. �5�, in the following part,
we will demonstrate such calculations with MnAsC0.015,
MnAsC0.03,

10 Mn0.985Al0.015As,11 and Mn0.994Fe0.006As
�Ref. 7� compounds as examples. In order to calculate the
�SM, the temperature dependence of the FM ratio in the
two-phase region should be first determined, as shown in
Fig. 2. The FM ratio decreases with increasing temperature.
Based on the temperature dependence of the FM ratio,
the temperature dependence of the �SM of MnAsC0.015,
MnAsC0.03, and Mn0.985Al0.015As for a field change of 5 T,
is calculated by using Eq. �5�. Comparisons are shown in
Figs. 3�a�–3�c� with those obtained by directly applying the
Maxwell relation �Eq. �4��, and by the CC equation �Eq. �2��.

FIG. 1. �Color online� Illustration of FOMPT’s isothermal magnetization
procedure at low temperature T1 and T2 �a�, two-phase region T3 �b�, and T4

�c� �T1�T2�T3�T4�. �1 stands for the magnetization work subtraction
between T1 and T2, which numerically equals to the area enclosed between
isothermal magnetization curves at T1 and T2. �2 and �4 stand for the
magnetization works of FM phase at T3 and T4, respectively, which numeri-
cally equal to their respective corresponding areas. �3 and �5 stand for the
PM counterparts at T3 and T4. f�T3� and f�T4� stand for the FM ratio at T3

and T4, respectively.

FIG. 2. �Color online� Temperature dependence of FM phase ratio in
MnAsC0.015 �a�, MnAsC0.03 �b�, Mn0.985Al0.015As �c�, and Mn0.994Fe0.006As
�d�. These data in �d� are deduced from Fig. 6 in Ref. 7.
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The dHC /dT used in the CC equation �Eq. �2�� are deter-
mined to be about 0.2 T/K, 0.25 T/K, and 0.25 T/K
for MnAsC0.015, MnAsC0.03, and Mn0.985Al0.015As com-
pounds, respectively. It can be seen that the spikes disappear
on the �SM −T curves determined by Eq. �4�. The �SM
values are almost consistent with those calculated by the
CC equation �Eq. �2��, indicating the validity of this modi-
fied approach. The real −�Smax for MnAsC0.015, MnAsC0.03,
and Mn0.985Al0.015As compounds for a field change of 5 T
are estimated to be about 9.8 J kg−1 K−1 at 287 K,
14.7 J kg−1 K−1 at 279 K, and 18.1 J kg−1 K−1 at 273 K,
respectively.

In order to further confirm the validity of the modified
approach, the �SM of Mn0.994Fe0.006As for a field change of 5
T are recalculated by using Eq. �5� and compared with the
data given in Refs. 7 and 9, as shown in Fig. 3�d�. It can
be seen that the discrepancy are more significant than those
in Figs. 3�a�–3�c�. This is because the FM ratio f�T�
decreases more rapidly with increasing temperature �see Fig.
2�d��. But the �SM obtained by Eq. �5� is well consistent

with that obtained by the CC equation �Eq. �2��, confirming
that such large discrepancy originates from neglecting the
temperature-dependent FM and PM masses variation in the
two-phase region. The Maxwell relation can be applied in
calculating the FOMPT’s �SM, if the mass changes in the
FM and PM phases are considered.

In conclusion, we have explained the origin of the large
discrepance by direct application of the Maxwell relation and
given the proper approach in estimating FOMPT’s �SM in
two-phase region. By considering the mass changes in the
FM and PM phases, the �SM values estimated by the modi-
fied Maxwell relation are well consistent with those obtained
by the CC equation, confirming the validity of the calcula-
tion approach we proposed for FOMPT’s �SM and its
equivalence with the CC equation in the region of two-phase
region.
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FIG. 3. �Color online� Temperature dependences of magnetic entropy
changes in MnAsC0.015 �a�, MnAsC0.03 �b�, Mn0.985Al0.015As �c�, and
Mn0.994Fe0.006As �d� for the field change of 5 T calculated by Eq. �5�. The
�SM data of MnAsC0.015, MnAsC0.03, and Mn0.985Al0.015As calculated by
direct application of Maxwell relation �Eq. �4�� are referred to Ref. 10 and
Fig. 3 of Ref. 11. The �SM data of Mn0.994Fe0.006As calculated by directly
application of Maxwell relation �Eq. �4�� and CC equation �Eq. �2�� are
referred to Fig. 4 in Ref. 7 and Fig. 3 in Ref. 9.
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