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Optically trapped quasi-two-dimensional Bose gases in a random environment:
Quantum fluctuations and superfluid density
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We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed
random potential at zero temperature. Accordingly, the ground-state energy, quantum depletion, and superfluid
density are calculated. The presence of the lattice introduces a crossover to the quasi-two-dimensional (2D)
regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder.
We thereby offer an analytical expression for the ground-state energy of a purely 2D Bose gas in a random
potential. The obtained disorder-induced normal fluid density nn and quantum depletion nd both exhibit a
characteristic 1/ ln(1/n2Da2

2D) dependence. Their ratio nn/nd increases to 2 compared to the familiar 4/3 in
lattice-free three-dimensional (3D) geometry, signifying a more pronounced contrast between superfluidity and
Bose-Einstein condensation in low dimensions. The conditions for possible experimental realization of our
scenario are also proposed.
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I. INTRODUCTION

The effect of dimensionality of a bosonic system on the
presence and nature of the Bose-Einstein condensation (BEC)
as well as on the superfluid phase transition has received long-
standing interest both experimentally and theoretically [1,2].
The physics at low dimensions exhibit fundamental differences
from that in three-dimensions (3D). In particular, the strong
long-range phase fluctuations typical of low-dimensional
bosonic systems usually inhibit the formation of long-range
order, which, on the other hand, characterizes the 3D BEC and
corresponding phase transition at low temperature [3].

Earlier work on low-dimensional bosonic systems [2] has
culminated in, particularly in the uniform two-dimensional
(2D) case, two important theoretical discoveries. The first is
that in 2D a true condensate can only occur at T = 0 and its
absence at finite temperature follows from the Bogoliubov k−2

[4] or Hohenberg-Mermin-Wagner (BHMW) theorem [5,6].
On the other hand, a superfluid phase transition has been
proven to exist at sufficiently low temperature in 2D [7,8].
However, according to Kosterlitz and Thouless (KT) [9], such
a transition is associated with the unbinding of vortex pairs or
quasi-long-range order, in contrast to the 3D phase transition
that features a long-range order parameter. Below the KT
transition temperature, a 2D Bose gas (liquid) is characterized
by the presence of a “quasicondensate” [10,11].

The remarkable experimental progress with ultracold
atomic gases, especially in the cooling and confining of
cold atomic gases in traps with controllable geometry and
dimension, has significantly stimulated new interest in low-
dimensional systems [12,13]. Tight confinement in one or two
directions considerably affects the properties of Bose gases
such as collisions and phase fluctuations [14], introducing
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a crossover to the quasi-low-dimensional regime. As such,
quasi-2D quantum degenerate Bose gases have been experi-
mentally produced both in single “pancake” traps and at the
nodes of a one-dimensional (1D) optical lattice [15].

However, these marginal 2D Bose gases are qualitatively
different from the corresponding infinite ones. Along this line,
Petrov et al. [14] pointed out that the presence of the trapping
potential suppresses long-range thermal fluctuations and that
in a quasi-2D system a true condensate can exist within a
wide parameter range. Moreover, Fischer [16] has obtained
in a marginal 2D case a model-independent geometrical
equivalence of the BHMW theorem.

Compared with harmonically trapped systems, optically
trapped Bose gases allow more experimental controllability
with tunable interatomic interactions, tunneling amplitudes
between adjacent sites, atom filling fractions, and lattice
dimensionality [12,17], thereby presenting a more useful test-
ing ground for theoretical ideas in studying low-dimensional
systems in novel conditions. On the other hand, disorder
has been observed to cause a dramatic influence on a BEC
and has attracted great interest recently [18,19]. In view of
the availability to control a 1D optical lattice and external
randomness, therefore, one especially appealing direction of
the investigation consists in studying the effect of external
randomness on a Bose gas trapped in a 1D optical lattice.

In this paper, we investigate the ground-state properties
and superfluidity of a 1D-optical-lattice-trapped Bose gas
in a random environment at T = 0. Capitalizing on the
characteristic lattice-induced 3D to quasi-2D dimensional
crossover, we analyze the effects of disorder in the asymptotic
2D regime. The present work is composed of two parts.
In the first part, we calculate the ground-state energy and
quantum depletion for the model system using the path-integral
approach within the Bogoliubov approximation. A discussion
on the dimensional crossover property in a random potential
is presented. In particular, our results in the quasi-2D regime
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with varnishing disorder are in good agreement with that of
a homogeneous 2D Bose gas at T = 0 [2,20,21]. We suggest,
therefore, that our result gives the analytical expression for the
ground-state energy of a uniform 2D dilute Bose gas in the
presence of weak disorder. In the second part, we calculate
the disorder and lattice-induced normal fluid density nn at
T = 0. Our results in the anisotropic 3D regime reproduce
the well-known ratio nn/nd = 4/3 [22,23] with nd being the
quantum depletion due to disorder. Whereas, in the quasi-2D
regime, nn exhibits a 1/ ln(1/n2Da2

2D) dependence unique to a
2D system and the ratio becomes asymptotically nn/nd = 2,
indicating a more pronounced contrast between superfluidity
and BEC in low dimensions.

The outline of the paper is as follows. In Sec. II, we
introduce the grand-canonical partition function for a dilute
Bose gas in the presence of a 1D optical lattice and weak
disorder at T = 0. Accordingly, the analytical expressions for
the ground-state energy and quantum depletion are derived.
Section III presents a detailed discussion on the dimensional
crossover in the ground-state properties induced by a 1D
optical lattice. The effects of disorder in the crossover regimes
are analyzed. In Sec. IV, we calculate the superfluid density
and study its behavior in, respectively, the 3D and quasi-2D
regime. Finally, we summarize our results in Sec. V and
propose possible experimental scenarios.

II. BOSE GASES IN THE PRESENCE OF A 1D OPTICAL
LATTICE AND WEAK DISORDER

A. Path-integral approach

Our starting point is the grand-canonical partition function
of a 3D weakly interacting dilute Bose gas [10] in the presence
of a 1D optical lattice and weak disorder

Z =
∫

D[ψ∗,ψ]e− S[ψ∗,ψ]
h̄ , (1)

where the action functional S[ψ∗,ψ] reads

S[ψ∗,ψ] =
∫ h̄β

0
dτ

∫
drψ∗(r,τ )

[
h̄

∂

∂τ
− h̄2∇2

2m
− µ

+Vopt(r)+Vran(r)+ ge

2
|ψ(r,τ )|2

]
ψ(r,τ ). (2)

In Eqs. (1) and (2), [ψ∗(r,τ ),ψ(r,τ )] collectively denote the
complex functions of space and imaginary time τ , β = 1/kBT

with kB being the Boltzmann constant and T being the
temperature, µ is the chemical potential, and ge is the effective
two-body coupling constant in the presence of a 1D optical
lattice. The Vopt(r) and Vran(r), respectively, represent the 1D
optical lattice and external random potential.

The optical potential Vopt(r) in Eq. (2) is given by

Vopt(r) = sER sin2(qBz), (3)

where s is a dimensionless factor labeled by the intensity of a
laser beam and ER = h̄2q2

B/2m is the recoil energy with h̄qB

being the Bragg momentum. The lattice period is fixed by qB =
π/d with d being the lattice spacing. Atoms are unconfined in
the x-y plane.

Disorder Vran(r) in Eq. (2) is produced by the random
potential associated with quenched impurities [22–24]

Vdis(r) =
Nimp∑
i=1

v(|r − ri|), (4)

with v(r) describing the two-body interaction between bosons
and impurities, ri being the randomly distributed positions
of impurities, and Nimp counting the number of ri . Here, we
restrict ourselves to the conditions of a dilute BEC system in
the presence of a very small concentration of disorder. Thereby,
v(r) can be approximated by an effective pseudopotential in
the form v(r) = gimp δ(r) [22], with gimp being the effective
coupling constant of an impurity-boson pair confined in a 1D
optical lattice.

It is important to mention that the tight confinement in
the direction of the optical lattice considerably influences
the value of the effective coupling constant [14,25] in
Eq. (2). Particularly, in the presence of the optical lattice,
ge generally exhibits dependence on the density and lattice
parameter [26], in marked contrast to a free 3D Bose gas where
g3D = 4πh̄2a3D/m with a3D being the 3D scattering length.
For formulation clarity, however, in the following we shall
use ge and gimp for notational convenience while leaving aside
their specific expressions to obtain general expressions for
the ground-state energy and quantum depletion. An analysis
of the lattice-renormalized effective coupling constant will be
given in Sec. IV.

B. Beyond-mean-field ground-state energy
and quantum depletion

In what follows, we focus on the situation where the optical
lattice is strong enough to create many separated wells that
give rise to an array of condensates, while full coherence is
still assured by the quantum tunneling. By this assumption,
one can refer to n0 as the condensate density and neglect
the Mott insulator phase transition. We also suppose disorder
is sufficiently weak. Under these conditions, one is able to
investigate the ground-state properties of the model system
using Bogoliubov’s theory [3].

We shall restrict ourselves to the case where s is relatively
large that the interwell barriers are significantly higher than
the chemical potential µ [27]. We thereby only consider
the lowest Bloch band where the condensate, in the tight-
binding approximation, can be written in terms of Wannier
functions as φkz

(z) = ∑
l e

ilkzw(z − ld) where w(z) =
exp(−z2/2σ 2)/π1/4σ 1/2 with d/σ � πs1/4 exp(−1/4

√
s).

Expanding the bosonic field variables in Eq. (2) by the ex-
pression ψ(r,τ ) = ∑

k,n ψk,nφkz
(z)e−i(kxx+kyy)eiωnτ with ωn =

2πn/h̄β being the bosonic Matsubara frequencies where n are
integers, the action Eq. (2) takes the form

S[ψ∗,ψ]

h̄βV
=

∑
k,n

ψ∗
k,n

[ − ih̄ωn + ε0
k − µ

]
ψk,n

+ g̃e

2

∑
k,k′,q
n,n′,m

ψ∗
k+q,n+mψ∗

k′−q,n′−mψk′,n′ψk,n

+
∑

k,k′,n

Vk−k′ψ∗
k,nψk′,n. (5)
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Here ε0
k = (h̄2/2m)(k2

x + k2
y) − 2t[1 − cos(kzd)], with t being

the tunneling rate between neighboring wells, is the energy
dispersion of the noninteracting model, V is the volume of the
system, and g̃e is the lattice-renormalized coupling constant
given by

g̃e = ge

[
d

∫ d/2

−d/2
w4(z) dz

]
= ge

d√
2πσ

. (6)

In Eq. (5), the Vk is the Fourier transform of Ṽran(r) =∑
i g̃impδ(r − ri) with g̃imp = gimpd/

√
2πσ being the lattice-

renormalized impurity-boson coupling constant [i.e., Vk =
(1/V )

∫
eikrṼran(r) dr]. For simplicity, the external random-

ness is assumed to be uniformly distributed with density
nimp = Nimp/V and Gaussian correlated [28]. Hence the two
basic statistical properties of the disorder are the average
value 〈V0〉 = g̃impnimp and the correlation function 〈V−kVk〉 =
g̃2

impnimp/V . Here the notation 〈..〉 stands for the ensemble av-
erage over all possible realizations of disorder configurations.

By applying the Bogoliubov theory to the action (5) and
proceeding in the standard fashion [3], one obtains the zero-
temperature thermodynamic function � = Eg − V µn0 with
the ground-state energy Eg reading

Eg

V
= 1

2
g̃en

2
0 − 1

2V

∑
k �=0

(
ε0

k + g̃en0 − Ek
)

+ n0

⎡⎣nimpg̃imp − nimpg̃
2
imp

V

∑
k �=0

ε0
k

E2
k

⎤⎦ . (7)

Here Ek = √
(ε0

k − µ + 2g̃en0)2 − g̃2
e n

2
0 is the energy spec-

trum of the elementary excitations and n0 is the condensate
density. In conformity with the general theory, we set µ = g̃en0

to ensure a gapless quasiparticle spectrum [29].
In the continuum limit, the sum in Eq. (7) is re-

placed with integrals. To avoid the large-k divergence in
the integration over kx and ky , however, one must intro-
duce a renormalization of the coupling constant by re-
placing g̃e → g̃e − (g̃2

e /V )
∑

k �=0(1/2ε0
k) and g̃imp → g̃imp −

(g̃2
imp/V )

∑
k �=0(1/2ε0

k) in Eq. (7). Upon this replacement, one
obtains after integration

Eg

V
= 1

2
g̃en

2
0

{
(1 + γ ) + mg̃e

2π2h̄2d
F

(
2t

g̃en0

)

+ mR̃g̃e

2πh̄2d
arccoth

[(
2t

g̃en0
+ 1

) 1
2

]}
, (8)

where the two parameters γ = 2κg̃imp/g̃e with κ = nimp/n0

and

R̃ = nimp

n0

4g̃2
imp

g̃2
e

, (9)

characterize the strength of disorder in a 1D optical lattice. In
Eq. (8), the function F (x) with the variable x = 2t/(g̃en0) is

0 2 4
0

4

8

x 2t gen0

F
x

0 2 4
0

1

2

x 2t gen0

H
x

π 2

a b

FIG. 1. (a) Scaling function F (x) in Eq. (10) (solid line) and
its asymptotic behavior (dashed line). (b) Scaling function H (x) in
Eq. (13) (solid line) and its asymptotic behavior (dashed line).

defined as

F (x) = (x + 1)

2

[
(3x + 1) arctan

(
1√
x

)
− 3

√
x

]
− π

2
ln

[
x

2x + 1 + 2
√

x(x + 1)

]
−πarcsinh(

√
x) + 2

∫ √
x

0

tan−1(z)

z
dz. (10)

The integration in Eq. (10) can be easily performed
numerically and the result is shown in Fig. 1(a). In the
ground-state energy Eq. (8), the first two terms give the
mean-field contribution modified by an optical lattice and
disorder, whereas, the last two terms represent beyond-mean-
field corrections, as a consequence of quantum fluctuations,
respectively, induced by interatomic interaction and external
randomness.

Quantum depletion (�N = N − N0) refers to the average
number of atoms with nonzero momentum [3] which can be
calculated within the Bogliubov’s theory as

�N =
∑
k �=0

[
ε0

k + g̃en0−Ek

2Ek
+ n0nimpg̃

2
imp

(
ε0

k

)2

E4
k

]
. (11)

By replacing the sum with the integral in the continuum limit,
one obtains

�N

N
= mg̃e

2π2h̄2d

[
H

(
2t

g̃en0

)
+ πR̃

8

(
1 + 2t

g̃en0

)− 1
2

]
, (12)

where the function H (x) with x = 2t/(g̃en0) is defined as

H (x) = (x + 1) arctan

(
1√
x

)
− √

x. (13)

III. DIMENSIONAL CROSSOVER FROM 3D
TO QUASI-2D AND 2D REGIMES

At low energies, the physical properties of a dilute Bose gas
can be expressed in terms of the two-body scattering amplitude
[30]. It has been well established that a tight confinement along
one or two directions will considerably affect the scattering
properties of atoms, particularly, introducing a dimensional
crossover from anisotropic 3D to low-dimensional regimes
[14,26].
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The two-body scattering problem in the presence of a 1D
optical lattice has been analytically investigated in Ref. [26].
For sufficiently deep lattices and chemical potential µ, which is
small compared to the interband gap, two distinct regimes can
be identified. (i) For µ 
 4t , where the wave function spreads
over many lattice sites, the system retains an anisotropic 3D
behavior. In this limit, Eq. (6) takes the limiting form g̃e = g̃3D

with

g̃3D = 4πh̄2ã3D

m
, (14)

with ã3D = a3Dd/(
√

2πσ ) being the lattice-renormalized s-
wave scattering length. (ii) For µ � 4t , the tunneling between
wells is negligible and the two interacting bosons are in the
ground state of an effective harmonic potential characterized
by frequency ω0 = h̄/mσ 2 and harmonic oscillator length σ .
In this limit, the system undergoes a crossover to the quasi-2D
regime where the coupling constant is reduced to that in a tight
confined harmonic trap g̃e = ghd [14,26,31] where

gh = 2
√

2πh̄2

m

1

a2D/a3D + (1/
√

2π ) ln
[
1/n2Da2

2D

] , (15)

with the surface density n2D = n0d and the effective 2D
scattering length a2D = √

h̄/mω0 = σ [14]. With decreasing
σ , the 2D features in the scattering of two atoms become
pronounced [14]; and in the limit σ 
 a, Eq. (15) becomes
independent of the value of a3D and a regime of purely 2D
scattering is achieved with Eq. (15) reducing to the coupling
constant of a purely 2D Bose gas gh → g2D where

g2D = 4πh̄2

m

1

ln
(
1/n2Da2

2D

) . (16)

Here the logarithmic dependence on the gas parameter n2Da2
2D

is unique of the 2D geometry.
Taking into account the dimensional crossover in the

effective coupling constant, in the following we focus on
analyzing the behavior of the ground-state energy in Eq. (8) and
quantum depletion in Eq. (12), respectively, in the anisotropic
3D and 2D geometry. In the limit 2t/n0g̃e � 1, corresponding
to the anisotropic 3D regime, we find F (x) � 32/15

√
x, as is

shown in Fig. 1(a) with the dashed curve. Substitutions of
this limiting value in Eq. (8) together with Eq. (14) yield
the ground-state energy of an effectively free 3D Bose gas
composed of bosons with effective mass m∗ = h̄2/2td2 and
coupling constant g̃3D [32,33]

Eg

V
= 1

2
g̃3Dn2

0

[(
1 + κ

b̃3D

ã3D

)
+ 128

15

√
m∗

m

(
n0ã

3
3D

π

)1/2

+ 4πR̃3D

√
m∗

m

(
n0ã

3
3D

π

)1/2
]

. (17)

In Eq. (17), the two characteristic parameters of disorder
in Eq. (8), respectively, take their 3D value (i.e., γ =
κb̃3D/ã3D and R̃3D = κb̃2

3D/ã2
3D) showing the 3D feature of

the interaction between the impurity-boson pair. The first term
in Eq. (17) represents the mean-field ground-state energy;
whereas the remaining terms exhibit the familiar dependence
on the effective 3D gas parameter

√
n0ã

3
3D, thereby consisting

of the generalized Lee-Huang-Yang (LHY) correction [34]
to the presence of a 1D optical lattice and weak disorder.
Equation (17) bears a formal resemblance with the corre-
sponding result in Ref. [23], which deals with a 2D optical
lattice system, consistent with the effective mass theory in the
3D limit where the lattice system is effectively treated as a
free gas with effective mass and coupling constant. The main
difference is related to the value of the renormalized coupling
constant g̃3D where the renormalization factor is different for
various lattice dimensions [32].

In the opposite 2D regime where 2t/g̃en0 
 1 and σ 

a, F (x) exactly approaches a limit F (x) = π/4 − π/2 ln x

with lnx � ln(mt/n2D2πh̄2) + ln[ln(1/n2Da2
2D)], as shown in

Fig. 1(a) with the dashed line. In this limit, the Bloch dispersion
can be neglected and the scattering problem reduces to 2D
with the coupling constant Eq. (16). In such conditions,
Eq. (8) yields the ground-state energy of a 2D Bose gas in
the presence of disorder

Eg2D

L2
� 1

2
g2Dn2

2D

⎡⎣1 − ln
[

ln
(
1/n2Da2

2D

)]
ln

(
1/n2Da2

2D

) + B

ln
(
1/n2Da2

2D

)
+

⎛⎝γ2D + 2R2D

arccoth
(√

1 + 2t
n2Dg2D

)
ln

(
1/n2Da2

2D

)
⎞⎠⎤⎦ , (18)

where L2 is the surface area of the gas, n2D = n0d is the
surface density, and B = 1/2 − ln(mt/n2D2πh̄2). In addition,
the two parameters of disorder, respectively, take their 2D
value γ2D and R2D. Both parameters, however, depend on
the 2D expression of g̃imp, which needs to be obtained
from investigating in detail the 2D scattering problem of
a boson with a quenched impurity. Such a problem is
definitely nontrivial and shall be left for further investigation.
In spite of this, Eq. (18) has shed light on the ground-
state properties of a 2D Bose gas in the presence of weak
disorder.

Particularly, Eq. (18) presents one of the key results of this
paper as follows. First, Eq. (18) in the absence of disorder
formally reproduces corresponding results in Ref. [31] for the
ground-state energy of a purely 2D dilute Bose gas. From
this viewpoint, we expect that the character of a 1D-lattice-
confined Bose gas in the presence of weak disorder in the 2D
regime will be similar to a purely 2D Bose gas in a random
potential. Therefore, we argue that Eq. (18) provides an
analytical expression for the ground-state energy of a uniform
2D Bose gas in the presence of weak disorder. Specifically,
the last two terms provide the contribution of disorder to the
ground-state energy. Second, Eq. (18) has provided beyond-
mean-field corrections due to quantum fluctuations in the 2D
geometry. These corrections arise from the combined effects
of interatomic interaction and disorder, and exhibit in 2D a
characteristic 1/ ln(1/n2Da2

2D) dependence, in contrast to the

3D counterpart
√

n0a
3
3D.

In a similar fashion, we analyze the asymptotic behavior of
quantum depletion. In the limit 2t/g̃en0 � 1, corresponding
to the anisotropic 3D regime H (x) � 2/(3

√
x). Consequently,
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one finds the quantum depletion in 3D

�N

N

∣∣∣∣
3D

�
(

8

3
+ π

2
R̃3D

) √
m∗

m

(
n0ã

3
3D

π

)1/2

, (19)

characterized by the dependence on the 3D gas parameter
(n0ã

3
3D)1/2. In the opposite 2D limit, on the other hand,

g̃e = g2Dd and H (x) saturates to the value π/2. Equation (12)
thereby asymptotically approaches the 2D quantum depletion
as

�N

N

∣∣∣∣∣
2D

�
(

1 + R2D

4

)
1

ln
(
1/n2Da2

2D

) , (20)

which is proportional to 1/ ln(1/n2Da2
2D), the small parameter

in 2D. For varnishing disorder, Eq. (20) is in good agreement
with Refs. [20,31] on the quantum depletion of a purely
weakly interacting 2D Bose gas. The second term in Eq. (20),
therefore, presents the disorder-induced condensate depletion
in 2D. Furthermore, a comparison of Eq. (20) with Eq. (19)
shows that, in the region where the Bogoliubov theory applies,
for the same value of the gas parameter the quantum depletion
due to disorder is larger in 2D than in 3D. A similar conclusion
has been drawn in Ref. [31] for the quantum depletion induced
by interatomic interaction.

IV. SUPERFLUID DENSITY

In this section, we calculate the superfluid density of a
dilute Bose gas in the presence of a 1D optical lattice and
weak disorder. The general definition of the superfluid density
is proposed by Hohenberg and Martin [6]. We emphasize that
superfluidity is a kinetic property of a system and superfluid
density is essentially a transport coefficient, in contrast to
the condensate density which is an equilibrium quantity.
Superfluid density can be determined by the response of the
system to an external perturbation [6].

In this paper, we adopt the following definition: Supposing
that a linear phase Qr is imposed on the originally static
bosonic field which gives rise to a superfluid velocity υ =
h̄Q/m; in response, the thermodynamic potential of the system
is changed by [35–37]

δ�

V
= h̄2

2m

∑
αβ

nαβQαQβ. (21)

Here the transport coefficient nαβ is interpreted as the su-
perfluid density [37]. In general, the nαβ is a tensor for an
anisotropic system.

To obtain nαβ , we substitute the wave function for a flowing
condensate ψ(r,τ ) = ϕ(r,τ )eiQr into Eq. (2) and obtain the
action SQ for the superfluid

SQ = S + h̄βV
∑
k,n

ψ∗
k,n

[
fkQ + h̄2

2m
Q2

]
ψk,n, (22)

where S refers to the action for a static BEC in Eq. (2) and
fkQ = [h̄2/m(kxQx + kyQy) + 2Qztd sin(kzd)]. Proceeding

in a similar fashion as in Sec. II, we obtain

�Q = V

(
−µ̃n0 + nimpg̃impn0 + g̃en

2
0

2

)
− 1

2

∑
k �=0

(
ε0

k − µ̃ + 2g̃en0 − Ẽk
)

− nimpg̃
2
impn0

∑
k �=0

εk − µ̃ + g̃en0

Ẽ2
k − f 2

kQ

, (23)

where Ẽk =
√

(ε0
k − µ̃ + 2g̃en0)2 − g̃2

e n
2
0 depends on Q

though µ̃ = µ − h̄2Q2/2m.
Since the presence of a 1D optical lattice breaks the global

rotational symmetry and leaves the gas system only isotropic
in the x-y plane, one can write nαβ = nααδαβ where nxx =
nyy �= nzz. Expanding Eq. (23) in powers of Q and truncating
at the quadratic order, we compare the resulting expression
with Eq. (21) and obtain

nxx = nyy = n − 2nimpg̃
2
impn0

V

∑
k �=0

h̄2k2
x

m

ε0
k

E4
k

, (24)

and

nzz = n− 2mnimpg̃
2
impn0

h̄2V

∑
k �=0

ε0
k

E4
k

[2td sin (kzd)]2 . (25)

Similar results have been obtained in Ref. [22] using the
current-current response function. The formal agreement
between the two affirms that, in spite of different ways to
impose perturbation and various options of physical quantities
to measure the response, these different routes to obtain
superfluid density can be unified within the framework of the
linear response theory.

The disorder-induced normal fluid density fraction can
be obtained through (nn)αβ = (1 − nαα/n)δαβ . Taking the
continuum limit of Eqs. (24) and (25), one finds

(nn)xx = (nn)yy = R̃
mg̃e

8h̄2πd
I

(
2t

g̃en0

)
, (26)

and

(nn)zz = R̃

(
m

m∗

)2 1

16πn0d3
K

(
2t

g̃en0

)
, (27)

where I (x) and K(x) are functions of the variable x =
2t/g̃en0, respectively, defined as

I (x) =
[√

1 + x − x ln

(
1 + √

1 + x√
x

)]
, (28)

and

K (x) = ln

(
1 + √

1 + x√
x

)
− 2 − (2 − x)

√
1 + x

x2
. (29)

The results of Eqs. (28) and (29) are plotted in Fig. 2. In
the asymptotic 3D limit, one finds I (x) � 2/3

√
x and K(x) �

4/3x3/2, corresponding to the dashed curves in Fig. 2. In such
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FIG. 2. (a) Scaling function I (x) in Eq. (28) (solid line) and
its asymptotic behavior (dashed line). (b) Scaling function K(x) in
Eq. (29) (solid line) and its asymptotic behavior (dashed line).

a situation, Eqs. (26) and (27), respectively, become

(nn)xx = (nn)yy � 2π

3
R̃3D

√
m∗

m

(
n0ã

3
3D

π

) 1
2

, (30)

and

(nn)zz � 2π

3
R̃3D

√
m

m∗

(
n0ã

3
3D

π

) 1
2

. (31)

Equation (31) demonstrates a similar dependence on the 3D
gas parameter as the 3D quantum depletion in Eq. (19).
Moreover, the ratio between Eq. (30) and the disorder-induced
quantum depletion nd in Eq. (19) equals 4/3 in the unconfined
X(Y ) direction, in agreement with Ref. [21], whereas this ratio
becomes (nn)zz/nd = 4m∗/3m due to the increased inertia of
the gas along the direction of optical lattice [22].

In the opposite 2D limit, one obtains the limiting expression
I (x) � 1 and (nn)2D = (nn)xx = (nn)yy is found to be

(nn)2D � R2D

2

1

ln
(
1/n2Da2

2D

) . (32)

Equation (32) presents another key result of this paper,
providing an analytical expression for the normal fluid density
in a homogenous Bose fluid in 2D in the presence of weak
disorder. Equation (32) shows that the normal fluid density
in 2D exhibits a characteristic 1/ ln(1/n2Da2

2D) dependence.
With respect to the 3D case, a comparison of Eqs. (20) and
(32) leads to nn/nd = 2 in 2D, indicating a more pronounced
contrast between superfluidity and BEC at T = 0. On the other
hand, K(x) in Eq. (29) diverges in the limit x → 0, leading to
diverging nzz in Eq. (27) for vanishing tunneling. This signals
the absence of superfluidity along the direction of the optical
lattice, which is consistent with the kinematical 2D nature of
the Bose gas in the absence of tunneling along the direction of
the laser.

V. POSSIBLE EXPERIMENTAL SCENARIOS
AND CONCLUSION

Central to testing the validity of the physics in this
article concerns the experimental realization of a BEC in
the superfluid phase along the entire evolution from 3D to
quasi-2D. The present facilities have allowed one to adjust
the depth of a lattice, realize tight confinement of the motion

of trapped particles, and ultimately achieve a kinematically
2D gas. In typical experiments to date, quasi-2D quantum
degenerate Bose gases have been experimentally produced
both in single pancake traps and at the nodes of 1D optical
lattice potentials [15]. In addition, it has been suggested that
BEC and superfluidity can both be achieved below a critical
temperature [14]. Furthermore, adding a tunable periodic
potential allows one to combine the benefit of the reduced
dimensionality with the advantage of working with large, yet
coherent samples [27].

Upon overcoming the previous difficulties, the experimen-
tal realization of our scenario amounts to controlling three
parameters whose interplay underlies the physics of this work:
the strength of an optical lattice s, the interaction between
bosonic atoms g̃n0, and the strength of disorder R̃. All these
quantities are experimentally controllable using state-of-the-
art technologies. The interatomic interaction can be controlled
in a very versatile manner via the technology of Feshbach
resonances [38]. In the typical experiments to date, the values
of ratio g̃n0/ER range from 0.02 to 1 [39,40]. The depth of
an optical lattice s can be changed from 0ER to 32ER almost
at will [41]. Disorder may be created in a repeatable way
by introducing impurities in the sample [42], or using laser
speckles and multichromatic lattices [43–45].

Further difficulties may arise in measuring the beyond-
mean-field corrections to the ground-state energy along the
dimensional crossover. For typical values of the atom density
and scattering length, such corrections remain very small and
hard to observe in the usual experiments that measure density
profiles or release energy. They can be visible, however, in
the frequencies of collective excitations in a lattice system
[27,46,47]. The direct measurement of quantum depletions of a
quasi-2D condensate can be achieved either through observing
ballistic expansion [48] or applying Bragg spectroscopy [49].
It is worth mentioning that the possibility to use ballistic
expansion to measure quantum fluctuations is associated with
the characteristics of an optical lattice where the confinement
frequency at each lattice site far exceeds the interaction energy.
As such, the time-of-flight images are essentially a snapshot
of the frozen-in momentum distribution of the wave function
at the time of the lattice switch-off, thus allowing for a direct
observation of quantum depletions. This technology cannot
be applied, for example, to measure quantum depletions of a
quasi-2D Bose gas confined in a harmonic trap. From this
perspective, Bragg spectroscopy admits broader ranges of
application, independent of methods of confinement to create
quasi-2D BEC’s systems.

We expect, therefore, that the phenomena discussed in this
article should be observable within the current experimental
capability. We emphasize here that the presented work is
restricted to weak disorder and weak interatomic interaction.
For further investigations in the presence of stronger inter-
atomic interaction or disorder, the path-integral Monte Carlo
simulation is a reliable method [50].

In summary, we have investigated a dilute Bose gas trapped
in a 1D optical lattice and a random potential. Capitalizing
on the characteristic dimensional crossover properties, the
obtained results in the quasi-2D regime allow us to derive
analytical expressions for the ground-state energy, quantum
depletion, and superfluid density of an effectively pure 2D
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Bose gas in the presence of weak disorder. Our analysis
signifies a more pronounced effect of disorder in systems with
reduced dimensionality in enhancing quantum fluctuations and
depleting superfluid density. In particular, the ratio between
the normal fluid density and the corresponding condensate
depletion increases to 2 in 2D, in contrast to the familiar 4/3
in lattice-free 3D geometry.
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[1] D. S. Petrov, D. M. Gangardt, and G. V. Shlyapnikov, J. Phys.
IV France 116, 5 (2004).

[2] A. Posazhennikova, Rev. Mod. Phys. 78, 1111 (2006).
[3] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation

(Clarendon Press, Oxford, 2003).
[4] N. N. Bogoliubov, Selected Works, Part II: Quantum and

Statistical Mechanics (Gordon and Breach, New York, 1991).
[5] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[6] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[7] W. Kane and L. Kadanoff, Phys. Rev. 155, 80 (1967).
[8] V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971); 34, 610

(1972).
[9] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);

J. M. Kosterlitz, ibid. 7, 1046 (1974).
[10] V. N. Popov, Functional Integrals in Quantum Field Theory and

Statistical Physics (Reidel, Dordrecht, 1983).
[11] C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003); Phys.

Rev. Lett. 102, 180404 (2009).
[12] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[13] U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C.

Stoof, Phys. Rev. A 66, 013615 (2002); J. O. Andersen, U. Al
Khawaja, and H. T. C. Stoof, Phys. Rev. Lett. 88, 070407 (2002).

[14] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev.
Lett. 84, 2551 (2000); D. S. Petrov and G. V. Shlyapnikov, Phys.
Rev. A 64, 012706 (2001).

[15] A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001);
D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, ibid. 92,
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