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We investigate the effects of Rashba-type spin-orbit coupling (SOC) on the condensed density and

superfluid density tensor of a two-component Fermi gas in the BCS-BEC crossover at zero temperature. In

anisotropic three dimensions (3D), we find that SOC has an opposite effect on condensation (enhanced)

and superfluidity (suppressed in the SOC direction), and this effect becomes most pronounced for very

weak interactions and the SOC strength being larger than a characteristic value. Furthermore, as functions

of SOC strength, the condensed density changes monotonically for all interaction parameters, while the

superfluid density has a minimum when the interaction parameter is below a critical value. We also discuss

the isotropic two-dimensional case where analytical expressions for the gap and number equations are

obtained and the same phenomena are found as that of the 3D case.

DOI: 10.1103/PhysRevLett.108.025301 PACS numbers: 67.85.�d, 03.75.Hh, 03.75.Kk, 05.30.Fk

Introduction.—Spin-orbit coupling (SOC) is a central
topic in condensed matter physics. First, it plays an
essential role for the realization of nontrivial topological
states, which are discussed intensively nowadays [1].
Second, as was shown by Gor’kov and Rashba [2],
SOC can induce a nontrivial spin-triplet pairing field
which leads to significant changes in the properties of
superconductors [3]. Quite recently, effective SOC was
realized for bosonic 87Rb ultracold atoms by dressing
two atomic spin states with a pair of lasers [4]. With
the anticipation that this novel technique is also applicable
to Fermi atoms, a practical proposal of generating
SOC in fermionic 40K atoms with tunable interaction
through Feshbach resonance is given in Ref. [5].

Motivated by this new progress, the effect of SOC
on the pairing and superfluid nature of Fermi systems in
the BCS-BEC crossover has become a cutting-edge field
recently because of its broad interests in condensed matter
physics. The spin-triplet pairing fields and anisotropic
nature of the superfluidity induced by SOC were investi-
gated in Ref. [6], and proposals for detecting this
phenomenon were given in Ref. [7] through measurement
of the momentum distribution and single-particle spectral
function. On the other hand, SOC significantly enhances
the pairing phenomena as was shown by the exact
two-body solutions [8] where a new bound state
(rashbons) emerges and many-body mean-field calcula-
tions [9–11].

In this Letter, we study the effects of SOC on two
fundamental quantities: condensation and superfluidity.
Condensation is well described by the concept of off-
diagonal-long-range order [12]. However, Landau’s
approach of calculation of the superfluid density (tensor)
is applicable only to systems satisfying Galilean transfor-
mation [13]. For systems in the presence of SOC obviously

violating Galilean transformation, we gave the general
method of calculating the superfluid density tensor.
Furthermore, we found that at zero temperature, SOC
enhances condensation while it suppresses superfluidity
in both 3D and 2D. To our knowledge, this is the first
demonstration of such opposite behaviors of condensation
and superfluidity driven by SOC and renews our previous
knowledge that these two phenomena change in the same
direction with other influencing factors (such as tempera-
ture and disorder).
The model.—In the presence of SOC, the system of a

two-component Fermi gas can be described by the finite
temperature grand-partition function Z ¼ R

d½ �c �; c ���
expð�S½ �c �; c ��Þ (@ ¼ kB ¼ 1 throughout), where the

action S½ �c �; c �� is given by S½ �c �; c �� ¼
R�
0 d�

R
ddr�P

�½ �c �@�c � þH 0 þH I� with � ¼ 1=T, � ¼"; # de-
noting spin, �c � and c � being the Grassmann fields, and
dð¼ 2; 3Þ being the dimension. We focus on a Rashba-type
SOC [2], and the single-particle Hamiltonian density can

be written as H 0ð �c ; c Þ ¼ �c ð�̂p þH soÞc , where c ¼
½c "; c #�T is the collective fermionic field, the kinetic op-

erator �̂p ¼ p̂2=ð2mÞ �� with � being the chemical po-

tential, and the Rashba term H so ¼ �ð�̂� p̂Þz with �̂
being the Pauli matrices and � being the SOC strength.
The singlet-channel attractive interaction can be charac-
terized by a contact interaction parameter gð<0Þ and cor-
respondingly H I ¼ g �c " �c #c #c ".
In order to study the Fermi-pairing problems, we

employ the Hubbard-Stratonovich transformation [14]
to cancel the four-body interaction term H I by introduc-
ing a pairing field �ðr; �Þ. After integrating out the fermi-
onic fields, we obtain the effective pairing action as

Seff½ ��;�� ¼ �R�
0 d�

R
ddrj�ðr; �Þj2=g� 1=2Tr ln½G�1

r;� �,
where the inverse propagator G�1

r;� is
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G�1
r;� ¼

@� þ �̂p �̂p 0 �

�̂�
p @� þ �̂p �� 0

0 � �� @� � �̂p �̂�
p

�� 0 �̂p @� � �̂p

2
66666664

3
77777775
; (1)

with �̂p ¼ �ðp̂y þ ip̂xÞ.
Mean-field theory.—At the mean-field level �ðr; �Þ ¼

�0, which is referred to as the gap parameter, the effective

pairing action becomes Seff½ ��;�� ¼ ��V�2
0=g�

1=2
P

p;i!n
ln½detG�1

p;i!n
�, where G�1

p;i!n
is the momentum-

frequency representation of Eq. (1) with �ðr; �Þ ¼ �0, V
is the size of the system, and !n ¼ ð2nþ 1Þ�=� are
the Fermi Matsubara frequencies. From detG�1

p;E ¼ 0,

the excitation spectrum can be obtained as Ep;	 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p þ 	j�pjÞ2 þ�2

0

q
and E0

p;	¼�Ep;	, where �p¼
p�
� with 
p ¼ p2=2m and 	 ¼ �1 is called helicity. Finally,

by using the thermodynamic relation � ¼ �1=� lnZ, we
have the thermodynamic potential � ¼ �V�2

0=gþ
1=2

P
p;�ð�p � Ep;	Þ � 1=�

P
p;	¼� lnð1þ e��Ep;	Þ from

which the gap and number equations are given, respec-
tively, by

1

g
¼ � 1

V

X
p;	¼�

tanhð�Ep;	

2 Þ
4Ep;	

(2)

and

n ¼ 1

2V

X
p;	¼�

�
1� ð�p þ 	j�pjÞ tanhð�Ep;	

2 Þ
Ep;	

�
: (3)

Equations (2) and (3) are the generalized BCS gap and
number equations in the presence of a Rashba-type SOC
which have been investigated in detail to study the ground
state and finite temperature properties of this novel system.
The key discovery is that the increased density of states by
SOC plays a crucial role for the understanding of the
pairing enhancing phenomena [11]. With these results in
mind, we now move on to the calculation and discussion of
condensed density and superfluid density tensor.

Condensed density.—For the Fermi-pairing problems,
the condensed density is generally defined as [12] nc ¼
1=V

P
p;ss0 jhc p;sc�p;s0 ij2. For the system considered in

this Letter, the singlet-channel attractive interaction sup-
ports a singlet-pairing field while SOC can simulta-
neously induce a triplet component. Within the mean-field
theory, spin-singlet and -triplet pairing fields are given
by [7] hc p;"c�p;#i ¼ �0

P
	 tanhð�Ep;	=2Þ=ð4Ep;	Þ and

hc p;"c�p;"i ¼ ��0ð�p=j�pjÞP		 tanhð�Ep;	=2Þ=ð4Ep;	Þ,
respectively. The spin-singlet contribution to the con-
densed fraction was first discussed in Ref. [15], where
it was shown to behave nonmonotonically with a mini-
mum as a function of SOC strength for a weak enough

interaction parameter. In this Letter, we take both pairing
components into consideration, and the full condensed
density becomes

nc ¼ �2
0

4

1

V

X
p;�

tanh2ð�Ep;	

2 Þ
E2
p;	

: (4)

At zero temperature, repulsive interactions between
Fermi pairs (bosons) result in depletion of the condensate
which is a familiar phenomenon for interacting BEC
systems.
Superfluid density.—Unlike the condensate density, the

superfluidity is a kinetic property of the system. By
Landau’s theory [13], the normal mass of the system can
be obtained through the calculation of the total momentum
carried by excitations when the system is enforced in a
uniform superfluid flow with velocity vs:

P ¼ X
p;�

pfðEp;� � p � vsÞ; (5)

where � is a conserved quantum number which is spin in
the absence of SOC, fðxÞ ¼ 1=ðe�x � 1Þ is the Fermi/Bose
distribution function depending on the nature of the ex-
citations, and Ep;� � p�vs is the excitation spectrum for a

moving system obtained from Galilean transformation. At
zero temperature, no excitations are created at very small
vs, and the superfluid density coincides with the total
density.
However, the situation is dramatically changed in the

presence of SOC where Galilean transformation is vio-
lated. In order to calculate the response of the system to
a uniform superfluid flow in the presence of SOC, instead
of using Eq. (5) which is no longer valid, we calculate
the increasing of thermodynamic potential 	�¼�ðvsÞ�
�ð0Þ¼ ð1=2ÞVP��mns;��v�v� from which ns;�� ¼
1=ðmVÞ½@2�ðvsÞ=@vs;�@vs;��vs¼0 is defined as the super-

fluid density tensor [16]. A convenient approach of gen-
erating such superfluid flow is applying a ‘‘phase twist’’ to
the order parameter [17]: �ðr; �Þ ¼ �0e

iq�r and corre-
spondingly vs ¼ q=2m. Therefore, the superfluid density
tensor can be defined as ns;�� ¼ 4m½@2�ðqÞ=@q�@q��q¼0.

By substitution of �ðr; �Þ ¼ �0e
iq�r into Eq. (1), the

thermodynamic potential for a moving system can be

obtained as �ðqÞ¼�V�2
0=gþ

P
kð~�k�k �q=2mÞ�1=

ð2�ÞPp;i¼1�4 ln½1þe�ð ~Ep;i�k�q=2mÞ�, where ~�p¼�pþq2=

ð8mÞ and ~Ep;i are solutions of

ð ~E2
p;i �!pÞ2 � 4j ~Ep;i�q=2 � ~�p�pj2 þ�2

p ¼ 0; (6)

with !p¼ ~�2
pþ�2

0þj�pj2�j�q=2j2 and �p ¼ Imð�p�
�
qÞ.

In the presence of SOC, when the whole system is moving
with a uniform velocity, the original four excitation spec-
trums (Ep;	;�Ep;	) are strongly coupled, and correspond-

ingly Eq. (5) is not well-defined now. Superfluidity in
systems that violates the Galilean transformation has also
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been discussed in the bosonic systems in the presence of
SOC where the critical velocity has been discussed with
the same method used in the calculation of the excitation
spectrum for moving systems [18].

Combined with Eq. (6), calculation of the second-order
derivative of �ðqÞ with respect to qi is straightforward
although tedious. Finally, the superfluid density tensor is
obtained as

ns;zz ¼ N

V
� 4m

V

X
p;	

Yp;	

�
pz

2m

�
2
; (7)

ns;k ¼ N

V
� 2m

V

X
k;	

Yp;	

� j�pj
2m�

þ 	
�

2

�
2

�m�2

4V

X
p;	

tanh

�
�Ep;	

2

�
�2
p þ 	�pj�pj þ �2

0

	�pj�pjEp;	

; (8)

where Yp;	 ¼ �fðEp;	Þ½1� fðEp;	Þ� with fðxÞ being the

Fermi distribution function, ns;xx ¼ ns;yy ¼ ns;k, and

ns;��� ¼ 0. In 3D, the anisotropic nature of the superfluid

can be evidently seen from ns;zz � ns;k. Since SOC does

not affect motion in z direction, spin is a conserved quan-
tum number and ns;zz has the same form as that obtained

from Eq. (5). However, superfluid motion in the x and y
directions is dramatically changed by SOC. Most interest-
ingly, a new term [last line in Eq. (8)] emerges due to SOC,
and it is not zero at T ¼ 0 which means suppression of
superfluidity in the x and y directions. The first line of
Eq. (8) can be understood in the spirit of Landau’s theory
where momentum carried by excitations Ep;	 is now

shifted by 	�m due to SOC. At T ¼ Tc, where �0 ¼ 0,
both ns;z and ns;k are equal to zero which is crucial for the

correctness of our results. In 2D, the system is isotropic
where the superfluid density is only given by ns;k.

With the anticipation that the mean-field theory is suffi-
cient to capture the qualitatively correct physics in the
whole BCS-BEC region at zero temperature as demon-
strated in Ref. [19] in the absence of SOC, we focus only
on the zero temperature behaviors of the condensed and
superfluid density.

Results and discussion.—Because, at zero temperature,
behaviors of the condensed and superfluid density (ns;k) are
the same in 3D and 2D cases with only quantitative differ-
ences, we will discuss the 3D case in detail and give a brief
discussion on the 2D results.

As usual, we regularize the contact interaction parame-
ter g in Eq. (2) by the experimentally related scattering
length a through 1=g ¼ m=ð4�aÞ � 1=V

P
p1=ð2
pÞ. With

the gap and chemical potential obtained from the self-
consistent solutions of Eqs. (2) and (3), we numerically
calculate Eqs. (4) and (8), and the results are shown in
Fig. 1. As can be seen from Figs. 1(a) and 1(c), the
condensed density is always enhanced by SOC.
Nevertheless, as seen from Fig. 1(a), we can still define a

characteristic value roughly located at �c � 0:5vF, where
vF ¼ kF=m and kF is defined through k2F ¼ 3�2n. For
� < �c, the condensed fraction defined as nc=n increases
only slightly which can also be seen from Fig. 1(c), where
the solid orange and dotted blue lines almost coincide with
the dashed black line (where � ¼ 0). Only when � > �c

can nc=n have a significant increase. For 1=kFa ! þ1,
the effect of SOC becomes very weak and nc=n ! 1. For
�c 	 vF, we also have nc=n ! 1, which agrees with the
statement that SOC can produce a bound state and thus
induces a crossover even for very weak interactions [8,11].
On the contrary, the superfluidity is always suppressed

by SOC as can be seen in Fig. 1(b). Furthermore, as a
function of �, superfluid fraction ns;k=n varies nonmon-

tonically with a minimum located at �0
c [denoted by red

points in Fig. 1(b)]. This minimum exists for an interaction
parameter below a well-defined critical value 1=kFac �
�0:13 which can be determined in Fig. 1(d) as the right-
most red crossing point. However, we find that SOC never
destroys the superfluid completely for all interaction pa-
rameters. The minimum superfluid fraction ðns;k=nÞmin !
0:5 for 1=kFa ! �1. When 1=kFa > 1=kFac, this mono-
tonic behavior disappears and ns;k=n decreases with in-

creasing �.
The opposite behavior of condensation and superflu-

idity controlled by SOC strength is found to be most
pronounced for very weak interaction parameters and � >
maxð�c; �

0
cÞ. As can be seen from the solid orange lines in
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FIG. 1 (color online). Condensed and superfluid fraction as
functions of �=vF and 1=ðkFaÞ in 3D. In (a) and (b), 1=ðkFaÞ are
given as �2, �1:2, �0:4, and 0.4 for the same line species from
below. In (c) and (d), �=vF are set to be 0.4 for solid orange
lines, 0.6 for dotted blue lines, 1.6 for dot-dashed red lines, and
2.0 for medium-dashed green lines. The dashed black line in (c)
corresponds to � ¼ 0. Red points in (b) and (d) are explained in
the text.
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Figs. 1(a) and 1(b), for � ¼ 2vF, the condensed fraction
nc=n is increased by 0.78 and the superfluid density is
suppressed by 0.38. For � <maxð�c; �

0
cÞ, the superfluid

density decreases quickly to its minimum value while the
condensed density changes only very slightly.

In 2D, divergence of the integral over momenta can be
cured by substituting 1=g ¼ �1=V

P
p1=ð2
p þ EBÞ into

Eq. (2), where EB is the binding energy and becomes the
controlling parameter for the BCS-BEC crossover prob-

lem. With the dimensionless parameters given by ~� ¼
�=vF, ~� ¼ �=EF,

~�0 ¼ �0=EF, and ~EB ¼ EB=EF,
where EF ¼ k2F=2m and kF is defined through k2F ¼ 2�n,

Eqs. (2) and (3) have analytical expressions as 1 ¼ ð ~�þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 þ ~�2

0

q
Þ=2þ ~�2ð1þ ~�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 þ ~�2

0

q
Þ þHð ~�; ~�0; ~�Þ and

lnEb ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 þ ~�2

0

q
� ~�Þ � Kð ~�; ~�0; ~�Þ, respectively,

with Hð ~�; ~�0; ~�Þ and Kð ~�; ~�0; ~�Þ given in Ref. [20].
Results of the superfluid and condensed fraction are shown
in Fig. 2. The same phenomena discussed in 3D are also
found in the 2D case. However, we find that �c drifts
leftwards when increasing EB=EF as can be seen from
Fig. 2(a). The critical interaction parameter for the appear-
ance of a minimum point of ns;k=n is EB � 0:018EF.

Conclusions.—In summary, general formulas were ob-
tained for the condensed density and superfluid density
tensor of two-component Fermi gases in the presence of

a Rashba-type SOC. At zero temperature, we found that
superfluidity in the SOC direction is suppressed while
condensation is enhanced by SOC, and this phenomenon
becomes most pronounced for very weak interaction pa-
rameters and � >maxð�c; �

0
cÞ. Furthermore, the superfluid

fraction exhibits a nonmonotonic behavior with a mini-
mum as a function of SOC strength when the interaction
parameter is below a critical value while the condensed
fraction increases only monotonically with either interac-
tion parameter or SOC strength. These phenomena happen
in both the 3D and 2D cases.
Finally, we point out that there is an essential difference

considering the mechanism of suppressing superfluidity
by disorder [21,22] and SOC. Superfluid motion is sup-
pressed through energy dissipation due to scattering with
impurities, while the nonzero normal density at zero tem-
perature induced by SOC is a direct result of the triplet
pairing field. In Ref. [9], it is demonstrated that, at zero
temperature, this triplet pairing field induces a nonzero
spin susceptibility which implies a residual normal fluid
[23]. An interesting future work is the combined effect of
disorder and SOC on these two phenomena where a Bose-
glass state [21] may show up based on the conclusion that
disorder and SOC both suppress superfluidity while deple-
tion of the condensate induced by disorder may be weak-
ened or cancelled by SOC.
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Note added.—After finishing this Letter, we note that

the full condensed density is also discussed in Ref. [24].
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