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We investigate the fidelity susceptibility (FS) of a two-dimensional spin-orbit-coupled (SOC) Fermi superfluid
and the topological phase transition driven by a Zeeman field in the perspective of its ground state wave function.
Without Zeeman coupling, FS shows additional features characterizing the BCS-BEC crossover induced by
SOC. In the presence of a Zeeman field, the topological phase transition is explored using both FS and the
topological invariant. In particular, we obtain the analytical result of the topological invariant which explicitly
demonstrates that the topological phase transition corresponds to a sudden change of the ground state wave
function. Consequently, FS diverges at the phase transition point with its critical behavior being χ ∝ ln|h − hc|
. Based on this observation, we conclude that the topological phase transition can be detected by measuring the
momentum distribution in cold atom experiments.
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I. INTRODUCTION

Spin-orbit coupling (SOC) is a key ingredient in realizing
nontrivial topological phases which is of great interest in the
current physics community [1–3]. Particularly, semiconduc-
tors with proximity-induced superconductivity and external
effective Zeeman coupling as well as noncentrosymmetric
superconductors provide real material examples with a non-
Abelian quantum order [4]. Another promising platform of
achieving this scenario is ultracold Fermi systems where SOC,
Zeeman coupling, and superconductivity can be readily real-
ized in the current experimental setup [5–7] and construction
of model systems on the Hamiltonian level is now available
[8,9]. Furthermore, two-dimensional (2D) geometry can be
created by generating a strong trapping potential along one
direction [10–12].

Theoretical investigations have shown that SOC has non-
trivial effects on various properties of the Fermi superfluid
systems. In the absence of Zeeman coupling, SOC can produce
a bound state called Rashbons [13,14] and therefore induce a
crossover from weakly correlated BCS to a strongly interacting
BEC regime (BCS-BEC) even for very weak particle-particle
interactions [15–18]. Of particular interest is the topological
phase transition driven by a Zeeman field [19–22] which
can be classified by a topological invariant constructed for
this particular scenario [4] and also in He3-A [23], where
its theoretical structure and relation with other invariants
have been discussed comprehensively. However, much of the
information encoded in the topological invariant has been
buried in the numerical procedure and therefore an analytical
result is of great interest and value for the full understanding
of these states. Both of these aspects are fundamentally related
to the ground state wave function of the many-body systems
considered. As a direct measure of the change of the ground
state wave function, fidelity susceptibility (FS) has been used

*kezhaozhou@gmail.com

extensively to study the quantum phase transition problems
[24], which is the main motivation of this paper.

In this paper we consider a typical 2D s-wave Fermi super-
fluid in the presence of both SOC and Zeeman coupling. In the
absence of Zeeman coupling, with the self-consistent solution
of the gap and number equations, we investigate the behaviors
of fidelity susceptibility (FS) as functions of both interaction
and SOC. Numerical results show that FS exhibits a local
peak structure characterizing the BCS-BEC crossover induced
by SOC which is quite different from other thermodynamic
quantities. In the presence of Zeeman coupling, we focus on a
situation with a strong enough SOC such that only topological
phase transition occurs. In particular, we obtain the analytical
result of the topological invariant which provides additional
insights into the topological nature of the ground state: (i)
Singular behavior of the Berry curvature is determined by
SOC through the vortexlike solutions of the Bogoliubov–de
Gennes (BdG) Hamiltonian instead of the Dirac point in
the excitation spectrum acting as a magnetic monopole in
momentum space; and (ii) the topological phase transition
corresponds to a sudden change of the ground state wave
function at zero momentum which is also captured by the
divergence of FS. Finally, its critical behavior is obtained
by analyzing the gapless excitation spectrum at the phase
transition point.

II. FORMALISM

The system under consideration can be described by the
Hamiltonian H = H0 − g

∫
d2rϕ†

↑(r)ϕ†
↓(r)ϕ↓(r)ϕ↑(r), with

g > 0 being the contact interaction parameter and ϕσ (=↑,↓)(r)
and ϕ†

σ (r) are the annihilation and creation field operators,
respectively. The noninteracting part H0 can be written
as H0 = ∫

d2rψ†(r)[εp̂ − hσz + λ( σ × p̂) · z]ψ(r), where
ψ(r) = [ϕ↑(r),ϕ↓(r)]T and kinetic energy εp̂ = p̂2/2m − μ,
with m, μ, and h being the mass of the Fermi atoms, the chem-
ical potential, and the effective Zeeman field, respectively.
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For simplicity we set � = 1 throughout this paper. The third
term is the Rashba SOC [25] with λ > 0 denoting the strength
of SOC and σ being the Pauli matrices. Within mean-field
theory, the interacting part can be approximated by HBCS =
− ∫

d2r[�(r)ϕ†
↑(r)ϕ†

↓(r) + H.c.] + ∫
d2r|�(r)|2/g, with �(r)

being the pairing field.
This model Hamiltonian H = H0 + HBCS is also relevant

to semiconductors where superconductivity is induced by
proximity effect and noncentrosymmetric superconductors in
the sense that the p-wave pairing component does not affect
much the topological properties of the system. As shown
in Ref. [4], the Majorana zero-energy state for the vortex
solution of the BdG equation contains the essential details
of the nontrivial topological nature of the ground state. For
our purpose, we only consider translational invariant solutions
where the paring field becomes a constant �(r) = �. Conse-
quently, in momentum space, the total Hamiltonian reduces
to H = ∑

p>0 	
†
pHBdG(p)	p + ∑

p εp + V �2/g, where V

denotes the size of the system, 	p = [ap,↑,ap,↓,a
†
−p,↑,a

†
−p,↓]T ,

and the BdG Hamiltonian HBdG(p) is

HBdG(p) =

⎡⎢⎢⎣
εp − h 
p 0 −�


∗
p εp + h � 0

0 � −εp + h 
∗
p

−� 0 
p −εp − h

⎤⎥⎥⎦ , (1)

with 
p = λ(py + ipx). Using the standard diagonalization
procedure, we obtain the ground-state free energy Eg =∑

p,s=±(εp − Ep,s)/2 + V �2/g, where the excitation spec-

trum Ep,s =
√
E2

p,s + �2
p,2, with Ep,s = Ep − s

√
h2 + |
p|2,

Ep =
√

ε2
p + �2

p,1, � p,1 = �| cos θp|, �p,2 = � sin θp, and

θp = π − arctan(|
p|/h). For fixed h, λ, and g, � and μ are
given by the self-consistent solutions of the gap and number
equations:

1

g
= 1

V

∑
p,s

1 + s cos θp
h
Ep

4Ep,s

, (2)

N = 1

2

∑
p,s

(
1 − Ep,s

Ep,s

εp

Ep

)
. (3)

Note that in the presence of Zeeman coupling, Eq. (2)
generally supports more than one solution, while the physical
one corresponds to the global minimum point of Eg . As usual,
divergence of the integral over momenta in Eq. (2) is removed
by replacing contact interaction parameter g by binding energy
Eb through V/g = ∑

p 1/(2εp + Eb).
Furthermore, the ground state wave function can be di-

rectly given by the unitary transformation that diagonalizes
Eq. (1). However, we find that the final result becomes more
physically transparent by using Bogoliubov transformation
step by step. First, in helicity basis: cp,s = sin(θp/2)ap,s −
s cos(θp/2)eisϕpap,−s , with ϕp = arctan(px/py), the to-
tal Hamiltonian becomes H = V �2/g + ∑

p,s ξp,sc
†
p,scp,s −

1/2
∑

p,s(�p,2e
isϕpc

†
p,sc

†
−p,s − s�p,1c

†
p,sc

†
−p,−s + H.c.), with

ξp,s = εp + s|
p| from which we see that pairing hap-
pens between both the same and different helicity
bases. Second, using Bogoliubov transformation: βp,s =

upcp,s − vpc
†
−p,−s , with up = √

(1 + εp/Ep)/2 and u2
p +

v2
p = 1, the Hamiltonian reduces to the standard pairing

form as H = V �2/g + ∑
p(εp − Ep) + ∑

p,s Ep,sβ
†
p,sβp,s −

1/2
∑

p,s �p,2(eisϕpβ
†
p,sβ

†
−p,s + H.c.). Finally, the ground state

wave function can be easily obtained as

|G〉 =
∏

p>0,s

(up,s + eisϕpvp,sβ
†
p,sβ

†
−p,s)|g〉, (4)

where |g〉 = ∏
p(up + vpc

†
p,+c

†
−p,−)|0〉, up,s and vp,s are given

as [
up,s

vp,s

]
=

√
1

2

(
1 ± Ep,s

Ep,s

)
. (5)

Here |g〉, constructed to be the vacuum state of βp,s , can be
considered as singlet pairing of different helicity states (cp,s).
The ground state wave function |G〉 describes triplet pairing of
the quasiparticles denoted by βp,s . In the absence of Zeeman
coupling, up = 1, vp = 0, and |g〉 = |0〉, βp,s is the helicity
basis and |G〉 represents state with pairing only happening in
the same helicity basis [15].

Finally, as a direct measure of the change of ground state
wave function, FS is defined as the following form:

χ (α) = 〈G|←−∂ α∂α|G〉 − 〈G|←−∂ α|G〉〈G|∂α|G〉, (6)

where |G〉 denotes the ground state wave function of the
many-body systems and α is the control parameter. Recent
investigations show that it provides an effective way of
determining the phase transition boundary [24]. The critical
behaviors of FS near quantum phase transition are of great
interest especially for topological phase transitions. On the
other hand, it has also been used to study the crossover induced
by interaction in the absence of SOC with its width being
associated with the crossover region [26].

III. BALANCED CASE

For balanced case h = 0, self-consistent solution of the gap
and number equations gives μ/EF and �/EF as functions
of λ̃ = mλ/kF and η = EB/EF , with EF = k2

F /2m being the
Fermi energy and the kF being defined through k2

F = 2πn.
Based on these results, we investigate the effect of SOC on the
behaviors of the FS in the BCS-BEC crossover problem. By
direct substitution of Eq. (4) into Eq. (6) we obtain

χ (λ) =
∑
p,s

1

8E4
p,s

[
�

(
sp⊥ − ∂μ

∂λ

)
− ξp,s

∂�

∂λ

]2

, (7)

χ (g) =
∑
p,s

1

8E4
p,s

[
�

∂μ

∂g
+ ξp,s

∂�

∂g

]2

, (8)

with p⊥ =
√

p2
x + p2

y .
The numerical results of Eqs. (7) and (8) are presented

in Fig. 1, where results in three dimensions (3D) are also
included as it provides the essential features of FS in the
BCS-BEC crossover problem. In 3D, the interaction is char-
acterized by the scattering length a introduced by substituting
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FIG. 1. (Color online) Fidelity susceptibility (in arbitrary dimen-
sion) as functions of interaction parameters and strength of SOC in (a)
and (b) three dimensions and (c) and (d) two dimensions. In (a) and (c),
λ̃ are given as 0, 1, and 2 for the solid blue line, black dotted line, and
red dashed line, respectively. The interaction parameters are set to be
η = 1/(kF a) = −1.2,−1,−0.6 in (b) and η = Eb/EF = 0.2,0.8,2.2
in (d) for lines from above.

V/g = −mV/4πa + ∑
p 1/(2εp) into Eq. (2) and Fermi

momentum is defined by k3
F = 3π2n.

For 3D case, as can be seen from Fig. 1(a), there is a global
peak in FS as a function of interaction parameter 1/kF a and it
disappears for strong enough SOC. Besides, it is no longer
symmetric for finite strength of SOC. However, Fig. 1(b)
shows that around the critical value of λ FS has a local
maximum which marks the crossover induced by SOC and
also disappears for large enough interaction parameters. For
the 2D case, as presented in Figs. 1(c) and 1(d), this feature
becomes more distinct in the sense that FS as a function of
EB does not show a clear crossover signature but it does
with varying SOC. Finally, it is worthwhile to note that the
local peak of FS as a function of λ is not located at the
same points where the gap parameter increases suddenly or
superfluid density has a minimum value [15,27]. In summary,
FS provides a different angle to investigate the effects of SOC
in the BCS-BEC crossover problem.

IV. IMBALANCED CASE

Here we only focus on the topological phase transition
in 2D. For weak SOC, there will be a first-order phase
transition with increasing h and FS is apparently divergent
due to the trivial sudden change of � and therefore the wave
function. For strong enough SOC, � is always nonzero even
for very large h and decreases continuously with increasing h

[22]. However, there is a topological phase transition across
h = hc =

√
μ2 + �2. For h < hc, the system is in a trivial

gapped superfluid state. When h > hc, the ground state is non-
trivial and is characterized by a nonzero topological invariant
N which is defined as [4,23] N = 1/2π

∫ +∞
−∞ d2pB(p), where

the Berry curvature is given by

B(p) = −i
∑
Eα

p <0

[
∂px

u†
p,α∂py

up,α − ∂py
u†

p,α∂px
up,α

]
, (9)

with up,α=1,2,3,4 being the eigenvectors of Eq. (1) corre-
sponding to the eigenvalues −Ep,+,Ep,+, − Ep,−,Ep,−, re-
spectively. It is clear that the ordering and sign of the elements
of the eigenvector do not influence the Berry curvature and
therefore N . Furthermore, only negative eigenvectors appears
in B(p). Therefore, we can rewrite the eigenvector in more
transparent form as up,s=± = [eisϕpF 1

p,s ,F
2
p,s ,F

3
p,s ,e

isϕpF 4
p,s]

T ,
with

F 1
p,s = up sin

θp

2
vp,s − vp cos

θp

2
up,s ,

F 2
p,s = up cos

θp

2
vp,s + vp sin

θp

2
up,s ,

F 3
p,s = up sin

θp

2
up,s + vp cos

θp

2
vp,s ,

F 4
p,s = up cos

θp

2
up,s − vp sin

θp

2
vp,s .

Simple algebraic manipulation gives

B(p) = ∂py
φp∂px

Fp − ∂px
φp∂py

Fp = − p
|p|2 · ∇Fp (10)

and Fp = ∑
α=1,4,s s(Fα

p,s)
2. N can now be easily obtained as

N = F0 = v2
0,+ = θ (h − hc). (11)

On the other hand, from Eq. (10) and using integral by parts,
N can also be given as N = 1/2π

∫
d2p∇ · (p/|p|2)Fp =∫

d2pδ(p)Fp = F0. This analytical result implies that: (i) The
singular behavior of Berry curvature comes solely from SOC
in terms of the phase factor ϕp of the vortexlike solution of
the BdG Hamiltonian; and (ii) it is the sudden change of
v2

0,+ instead of SOC that explicitly determines the topological
phase transition. Consequently, there is a sudden change of
the ground state wave function associated with the component
of triplet pairing of the quasiparticles denoted by βp,+ at
zero momentum. This is also reflected in the momentum
distribution investigated in [28] as can be seen from Eq. (3)
that E0,+/E0,+ = sgn(hc − h) and conclusively proves that
the topological phase transition is directly related to the
momentum distribution which can be readily measured in cold
atom experiments. Finally, as expected, this sudden change of
the ground state wave function also leads to divergent behavior
of FS at h = hc. The numerical result of FS is presented
in Fig. 2 together with the momentum distribution of the
total particle numbers Eq. (3) on both sides of the critical
point where the parameters are chosen as Eb/EF = 0.5 and
mλ/kF = 1 such that no first-order phase transition happens.

In order to obtain the critical behavior of FS around the
transition point, we use another equivalent form of FS [29]:
χ (h) = ∑

m |〈m|HI |G〉|2/(Em − Eg)2, where |m〉 denotes the
excited state and Em the excitation energy. Here HI = ∂hH

can be considered as the driving term and χ (h) is directly
related to the dynamical response of the system [24]. After
direct but lengthy calculations, we obtain FS as functions
of h:

χ (h) =
∑
p>0

[
M2

p,+
E2

p,+
+ 2

M2
p,0

(Ep,+ + Ep,−)2
+ M2

p,−
E2

p,−

]
, (12)
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FIG. 2. (Color online) Fidelity susceptibility (in arbitrary dimen-
sion) as functions of Zeeman field with Eb/EF = 0.5 and mλ/kF =
1. The vertical red dashed line denotes the critical Zeeman field
hc = 0.792. The two inserted figures correspond to the momentum
distribution of the total particle numbers shown in Eq. (3) as a function
of px with py = 0.

where matrix elements Mp,s and Mp,0 are given in
Appendix A.

From Eq. (12) it is clear that the divergent behavior solely
comes from the first term where Ep,+ = 0 at the transition
point around the Fermi point px = py = 0. Besides, since
the gap and chemical potential vary continuously across the
phase transition, derivatives of gap and chemical potential with
respect to h are irrelevant constants for the critical behavior
of FS. Therefore, we can consider �, μ, and h as independent
controlling parameters and HI = ∂hH = −σz, which indicates
that FS is directly related to the spin-spin correlation function
and significantly simplifies the matrix elements Ms and M0.
Close to the critical Zeeman coupling hc, the asymptotic
form of Mp,+ and the excitation spectrum Ep,+ around the
Fermi points can be given as Mp,+ � −(�λ/2hc)p⊥/Ep,+
and E2

p,+ = �2λ2p2
⊥/h2

c + |h − hc|2, respectively. Substitut-
ing these asymptotic results into Eq. (12 ), we obtain the critical
behavior of FS as

χ (h) ∝ − ln |h − hc|, (13)

with details given in Appendix B.
As a byproduct, we conclude that existence of gapless

excitation of the system does not necessarily means divergence
of FS and phase transition. For example, in the absence
of SOC, the Hamiltonian still supports gapless excitation
spectrum when h = hc [30,31]. However, it does not lead
to a divergent behavior of FS which can be understood in
the following aspects. First, ∂hH0 in HI commutes with
total Hamiltonian without SOC, therefore it does not con-
tribute to FS. Second, it is easy to show that ∂hHBCS only
supports pairing excitations with opposite spins, therefore
M2

p,± = 0 and only the second term in Eq. (12) is not
zero. Finally, without SOC, the excitation spectrum takes the
following form: Ep,s =

√
(p2/2m − μ)2 + �2 − sh and the

combination Ep,+ + Ep,− = 2
√

(p2/2m − μ)2 + �2 is al-
ways gapped. Therefore, without SOC, the gapless nature of
the excitation spectrum does not manifest itself by causing
divergence of FS and therefore no continuous phase transition.

V. CONCLUSION

We investigate the ground-state properties of a pairing
system in the presence of both SOC and Zeeman coupling that
supports nontrivial topological order. In particular, we obtain
the analytical result for the topological invariant which directly
relates the topological phase transition with a sudden change of
the BCS-type ground state wave function at zero momentum.
Furthermore, it conclusively demonstrates that the topological
phase transition can be determined by measuring the momen-
tum distribution in cold atomic experiments. Generalization of
this method of evaluating the topological invariant to higher
dimensions and lattice situations will be of great interest. Last
but not least, in the absence of Zeeman field without phase
transitions, FS shows some features that are not revealed by
other thermodynamic quantities in the BCS-BEC crossover
induced by SOC.
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APPENDIX A: DERIVATION OF EQ. (12)

Fidelity susceptibility are defined as

χ =
∑
m

|〈m|HI |G〉|2
(Em − Eg)2

, (A1)

with |G〉 and |m〉 denoting the ground and excited state, respec-
tively. Here HI = ∂H/∂h = ∑

p>0 	
†
p∂hHBdG(p)	p + C,

with ∂hHBdG(p) being given as

∂hHBdG(p)

=

⎡⎢⎢⎢⎣
−∂hμ − 1 0 0 −∂h�

0 −∂hμ + 1 ∂h� 0

0 ∂h� ∂hμ + 1 0

−∂h� 0 0 ∂hμ − 1

⎤⎥⎥⎥⎦ (A2)

and C being a constant. Since only excited states accounts for
the summation in Eq. (A1), C does not contribute to χ and can
be neglected in the following discussion.

Using the Bogoliubov transformation described in the main
text, HI can be rewritten in terms of the quasiparticle operator
αp,s = up,sβp,s − eisϕpvp,sβ−p,s :

HI =
∑
p>0

[α−p,+ α
†
p,+ α−p,− α

†
p,−]M ′

⎡⎢⎢⎣
α
†
−p,+
αp,+
α
†
−p,−
αp,−

⎤⎥⎥⎦, (A3)

with M ′ being the matrix elements. Substitution of Eq. (A3)
into Eq. (A1) and using the fact that αp,s |G〉 = 0, one can
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obtain Eq. (12),

χ (h) =
∑
p>0

[
M2

p,+
E2

p,+
+ 2

M2
p,0

(Ep,+ + Ep,−)2
+ M2

p,−
E2

p,−

]
, (A4)

with matrix elements Mp,+, Mp,−, and Mp,0 are given as

Mp,+ = ∂hμ
(
v2

p − u2
p

)
up,+vp,+

+ (1 − 2upvp∂h�)up,+vp,+ cos θp

+
(

upvp − ∂h�

2

)
sin θp,(u

2
p,+ − v2

p,+), (A5)

Mp,− = (
u2

p − v2
p

)
(up,+vp,− − up,−vp,+) sin θp

+ [
2upvp∂hμ − ∂h�

(
u2

p − v2
p

)
cos θp

]
× (up,+up,− + vp,+vp,−), (A6)

Mp,0 = ∂hμ(v2 − u2)u−v− − (1 + 2uv∂h�)u−v− cos θ

−
(

uv + ∂h�

2

)
sin θ (u2

− − v2
−). (A7)

APPENDIX B: DERIVATION OF EQ. (13)

At the critical point h = hc, the excitation spectrum
Ep,+ = 0 at p = 0, while Ep,− is always gapped. From
Eq. (A4) it is clear that the integration is well behaved in
the ultraviolet limit. In the infrared limit, only the first term
may cause divergent behavior of χ (hc) because of the gapless
excitation spectrum in the denominator in the p → 0 regime.

In order to obtain the asymptotic form of the excitation
spectrum, we investigate the following identity:

E2
p,+E2

p,− = (
ε2

p + �2 + h2 + |
p|2
)2

− 4
(
ε2

ph
2 + ε2

p|
|2 + �2h2).
Around the critical point h = hc + η, with η being small,
Taylor expansion of the above identity to the lowest (second)
order in p⊥ and η, we obtain

E2
p,+E2

p,− → 4�2λ2p2
⊥ + 4h2

cη
2. (B1)

Since Ep,− is always gapped, in the zeroth order,

E2
p,− → (

√
μ2 + �2 + h)2 = 4h2

c . (B2)

Together with Eqs. (B1) and (B2), we obtain the asymptotic
form of the excitation spectrum E2

p,+:

E2
p,+ = �2λ2

h2
c

p2
⊥ + η2. (B3)

As have been stated in the main text, for the topological
phase transition considered in this paper, gap parameter �

and chemical potential μ as functions of Zeeman field h are
continuous and their derivatives (appearing in the enumerator)
are irrelevant to the divergent behavior of χ (h). Therefore,

matrix element Mp,+ can be reduced to

Mp,+ = up,+vp,+ cos θp + upvp sin θp,

(
u2

p,+ − v2
p,+

)
= 1

2

� sin θp cos θp

Ep,+
+ 1

2

�| cos θp| sin θp

Ep

Ep,+
Ep,+

= 1

2

� sin θp| cos θp|
Ep,+

(Ep,+
Ep

− 1

)
. (B4)

Around the critical point hc, sin θp ∝ p⊥, | cos θp| = 1,
and Ep,+ ∝ p⊥. Therefore, at first order in p⊥, Mp,+ can be
approximated as

Mp,+ → −1

2

� sin θ

Ep,+
= −1

2

�λp⊥
Ep,+hc

.

Together with Eq. (B3), we obtain the asymptotic form of
Mp,+ as

Mp,+ → −1

2

�λp⊥√
�2λ2

h2
c

p2
⊥ + |h − hc|2hc

. (B5)

Substituting Eqs. (B5) and (B3) into the first term in
Eq. (A4), we obtain

χ (h) = 1

4

∑
p>0

�2λ2p2
⊥

hc

(
�2λ2

h2
c

p2
⊥ + |h − hc|2

)2 .

As usual, summation over momentum is replaced by
integration in the continuum limit and we only consider the
infrared regime of the momentum integration which causes
divergence of χ (h). Based on these assumptions, we obtain

χ (h) ∝
∫

0
p⊥dp⊥

�2λ2p2
⊥

h2
c

(
�2λ2

h2
c

p2
⊥ + |h − hc|2

)2

∝
∫

0
dx

�2λ2

h2
c

x(
�2λ2

h2
c

x + |h − hc|2
)2

∝
∫

dx
x

(x + |h − hc|2)2
� −1 − ln |h − hc|2

∝ − ln |h − hc| , (B6)

where we neglect the exact value of the coefficient which in
general depends on the derivative of � and μ with respect to h.

Finally, we conclude that the terms depending on the
derivative of � and μ with respect to h does not affect the
logarithmic divergence of χ . First, for p⊥ → 0, v2

p − u2
p,

1 − 2upvp∂h�, cos θp, and upvp − ∂h�

2 are constants and
up,+vp,+ ∝ p⊥/Ep,+ and sin θp ∝ p⊥. Second, the third term
is second order in p⊥ as can be seen from Eq. (B4). Therefore,
in the lowest order in p⊥, Mp,+ ∝ p⊥/Ep,+, which leads to
the logarithmic divergence of χ (h) as can be seen from the
first line of Eq. (B6).
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